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Abstract

Multi-view learning is a task of learning from multiple data sources where
each source represents a different view of the same phenomenon. Typ-
ical examples include multimodal information retrieval and classification
of genes by combining heterogeneous genomic data. Multi-view learning
methods can be motivated by two interrelated lines of thoughts: if single
view is not sufficient for the learning task, other views can complement
the information. Secondly, learning by searching for an agreement between
views may generalize better than learning from a single view. In this thesis,
novel methods for unsupervised multi-view learning are proposed.

Multi-view learning methods, in general, work by searching for an agree-
ment between views. However, defining an agreement is not straightforward
in an unsupervised learning task. In this thesis, statistical dependency is
used to define an agreement between the views. Assuming that the shared
information between the views is more interesting, statistical dependency
is used to find the shared information. Based on this principle, a fast linear
preprocessing method that performs data fusion during exploratory data
analysis is introduced. Also, a novel evaluation approach based on the
dependency between views to compare vector representations for bilingual
corpora is introduced.

Multi-view learning methods in general assume co-occurred samples for the
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views. In many applications, however, the correspondence of samples is ei-
ther not known in advance or is only partially known. Examples include
probes used by different microarray platforms to measure genetic activities
for the same set of genes and unaligned or partially aligned parallel doc-
uments in statistical machine translation. In this thesis, a novel approach
is introduced for applying multi-view learning methods when sample cor-
respondence between the views is not known.

A novel data-driven matching algorithm is proposed to infer a one-to-one
matching of samples between two views. It is worth noticing that defining
a similarity measure in such a case is not straightforward since the ob-
jects may have different sets of features. We assume that true matching
of samples will maximize the statistical dependency between two views.
A two-step iterative solution is proposed for the matching problem that
uses canonical correlation analysis (CCA) to measure linear dependency.
A non-linear version of the matching algorithm using kernel CCA is also
presented. It is also shown how the prior information in the form of soft and
hard constraints can be incorporated in the matching algorithm to improve
the matching task.

The proposed matching algorithm is purely data-driven, hence it involves
uncertainties due to measurement errors. The matching algorithm is ex-
tended to a more realistic setting where each view is represented by multi-
ple instantiations. A concrete example is matching of metabolites between
humans and mice, where each human-mouse pair will result in a differ-
ent matching solution. A generalized matching algorithm, called consensus
matching, is proposed which combines different matching solutions to a give
a final matching of the samples.

Computing Reviews (1998) Categories and Subject
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G.0 Mathematics of Computing
I.0 Computing Methodologies

General Terms:
bi-partite matching, (kernel) canonical correlation analysis, data fusion,
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Chapter 1

Introduction

1.1 General background

Machine learning is a field of science that lies in the intersection of computer
science and statistics. From a computer science point of view, the defining
question for machine learning is how to make computer programs that
learn from experience. From a statistics point of view, machine learning
not only deals what can be inferred from the data but also how we can
effectively store, index, retrieve, or merge the data to make better statistical
inferences (Mitchell, 2006). In this thesis, I focus on machine learning
algorithms that learn from multiple independent views of the data. Typical
examples include: identifying cancer-related genes by analyzing genetic-
measurements obtained by different microarray platforms or under different
biological conditions; classification of webpages based on their content and
the contents of pages they link to; object recognition from color and shape.

Learning from data, in general, refers to summarizing the collection of
observations, called the data, by finding regularities or patterns in it. The
purpose of summarizing the data could be to predict the behavior of a new
observation, or to simply understand the underlying phenomenon. The typ-
ical examples of learning from data include classification, regression, clus-
tering or density estimation. These methods have been successfully used
in many important fields, for example, bioinformatics, text categorization,
and information retrieval.

Finding reliable regularities or patterns in data is, in principle, relatively
easier if we have large collections of data. However, the amount of data
is limited in many applications, for instance, the task of inferring differ-
entially expressed genes in a typical microarray study where thousands of
genes are measured over few arrays (Dudoit et al., 2002). One of the most
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8 1 Introduction

challenging problems in machine learning is to learn from a small number
of observations. This is usually referred to as large p, small n problem.
Here, n is the number of observations, and p is the number of features.
In such cases, the model tends to over-learn the data, that is, the model
describes the given data well, but does not capture the underlying process
that generates the data. Also, the data is usually mixed with noise. This
leads to poor learning and hence poor predictive performance.

There has been a lot of work on how to learn reliable models given lim-
ited amount of data, for instance, using Bayesian approaches (West, 2003).
However, in this thesis, the problem is approached from a different per-
spective. Consider a situation in which the observations are represented in
multiple views, where each view represents a different aspect of the data.
Using multiple views for learning has been motivated through two differ-
ent lines of thoughts: (i) Different views might contain partly independent
information about the task at hand, and combining these complementary
information increases the total information for the task at hand. (ii) In
another setting when each view is sufficient, the model learned based on
the agreement between the views may generalize better (Dasgupta et al.,
2001). Another advantage of learning from multiple views is noise reduc-
tion. Assuming that noise is independent between the views, averaging
over multiple views may reduce the effect of noise. Such approaches can be
termed as multi-view learning approaches where the task is to learn from
multiple views of the data.

The most important question in multi-view learning is how to combine
different views. In other words, which information in multiple views is rel-
evant to the problem that needs to be solved. This is rather well defined,
though not trivial, in a supervised task. For instance, in a classification
task, multiple views should be combined such that the classification accu-
racy is optimal. Hence, the information which improves the classification
accuracy is relevant. Identifying the relevant information is, however, not
straightforward in an unsupervised learning task. In the absence of a clear
hypothesis, it is not easy to define how to combine multiple views. In this
thesis, the problem of learning from multiple views in an unsupervised set-
ting is considered. However, such approaches can also be extended to a
semi-supervised or a supervised setting.

Recently, many approaches have been proposed towards learning from
multiple views in both supervised and unsupervised settings. The principle
behind learning from multiple views is to learn based on agreements be-
tween them. Views are said to agree with each other if the predictions made
based on them are similar (Yarowsky, 1995; Blum and Mitchell, 1998). In
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this thesis, statistical dependency between the views is used to define the
agreement. Dependency between the views can be used to represent what is
common or shared between them. These methods are suitable to the prob-
lems where the shared information between the views is more interesting
than the information that is specific to a view. Hence, relevance is defined
through the statistical dependency between the views. The information
that is specific to a view is considered not interesting and can be discarded
as noise. In other words, using dependency for multi-view learning methods
helps separating relevant and irrelevant information for a given task.

Multi-view learning methods, in general, assume co-occurrence of sam-
ples, that is, each view consists of the same set of samples. For instance,
while combining gene expression data from different platforms or species,
the correspondence of probes should be known (Hwang et al., 2004); images
must be paired with the corresponding texts in an image retrieval task (Vi-
nokourov et al., 2003b); documents in two languages should be mapped
at some level, for example at sentence-level or paragraph-level, in machine
translation (Barzilay and McKeown, 2001) or cross-language information
retrieval (Vinokourov et al., 2003a). The requirement of co-occurrence of
views is quite hard in practice and limits the possibility of using vast amount
of data available in different views. In many real world examples, corre-
spondence of samples between two views is either not known or is only
partially known in advance. Consider, for example, the huge amount of
unaligned parallel or comparable texts in two languages in the WWW.
Manual mapping of documents is cumbersome. This hinders the use of
multi-view learning methods in such applications, in this case, in machine
translation or cross-language information retrieval.

Standard multi-view learning methods can be applied to non-co-occurred
views or data sources, if the correspondence of samples between the views is
first inferred somehow. Since different views represent different aspects of
the same concept or phenomenon, we can assume that there is an implicit
one-to-one correspondence of samples between the views, and such corre-
spondence is not known, or only partially known in advance. However,
matching of samples between two views is not straightforward, because
each view has a different set of features to represent a sample. Defining
a measure of similarity, for instance, distance-based similarity between the
samples in two different feature spaces, is far from trivial.

In this thesis, the problem of multi-view learning in a non-standard set-
ting when the views are not co-occurred is considered. A novel data-driven
method based on statistical dependency to match the samples between two
views is introduced. The underlying assumption is that the correct match-
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ing of samples will result in the maximal dependency between the views.
Hence, the matching algorithm finds a matching of samples that maximizes
the statistical dependency between the views. Given such a matching so-
lution, any standard multi-view learning methods can be applied. In this
thesis, the matching algorithm is empirically demonstrated on three exam-
ples: matching of probes of gene expression profiles from two microarray
platforms; matching of sentences between bilingual parallel corpora using
monolingual data; and matching of metabolites between humans and mice.

1.2 Contributions and organization of thesis

The main focus of this thesis is to study and develop methods to learn
from multiple data sources. The multi-view learning methods proposed in
this thesis are based on the following principle: Information that is shared
by all the views or data sources is more interesting than source-specific
information. We proposed the use of statistical dependency between the
views to find what is shared between the views. The main contributions of
this thesis are following:

1. An unsupervised data fusion approach that preserves the information
shared between the data sources is introduced.

2. A novel evaluation method to compare vector space models for sen-
tence-aligned parallel bilingual corpora is introduced. The evaluation
approach provides a direct measure for evaluation based on statistical
dependency.

3. A novel problem setting of multi-view learning when the correspon-
dence of samples between the views is not known is introduced.

4. A data-driven matching algorithm to infer the matching of samples
between two views is proposed. A two-step iterative solution to the
matching problem is proposed. It uses CCA to model dependency in
the first step and the assignment problem to infer the matching in
the second step .

5. A non-linear extension of the matching algorithm using KCCA is
proposed in order to utilize non-linear dependency for the matching.
The empirical comparison of matching algorithms based on CCA and
KCCA is demonstrated on a sentence-matching task for bilingual par-
allel corpora using monolingual data.
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6. A generalized matching algorithm, called consensus matching, in a
more realistic application when the two views have multiple repre-
sentations is introduced. An approach to combine the matching solu-
tions obtained using any two representations of the views is proposed.
The consensus matching is implemented in a real research problem of
inferring the matching of metabolites between humans and mice.

The organization of thesis is as follows. In Chapter 2, a brief overview
of learning methods is given. The chapter describes the problem of learning
from single data source, the challenges of learning and the different learning
setups.

In chapter 3, the concept of learning from multiple data sources is
defined and motivated through real world examples. The current state-
of-the-art multi-view learning methods are also discussed. Section 3.1 de-
scribes the multi-view learning methods in the context of this thesis, and ex-
plains the principle behind using the statistical dependency for multi-view
learning. Section 3.2 explains the notion of dependency in mathematical
terms and gives a brief overview of measures of dependency. Sections 3.3.1
and 3.3.2 describe the methods to model dependencies between two data
sources, and their variants are described in the following subsections.

The chapter is finally concluded by describing two novel methodologies
introduced in this thesis. Section 3.4 explains an unsupervised data fusion
approach based on maximizing statistical dependencies between views. Sec-
tion 3.5 describes a direct evaluation approach to find an appropriate vector
representation of sentences for a given bilingual corpora.

In Chapter 4, the problem of multi-view learning when the correspon-
dence of samples between views is not known is described and a matching
algorithm to infer the correspondence of samples between two views is intro-
duced. Section 4.1 explains the matching problem in general, and describes
the standard algorithms to solve the matching problem when the samples
in two views are represented by same set of features. In Section 4.3, the
matching problem when the samples in two views have non-comparable
features sets is formulated. Section 4.4.1 presents a solution of the match-
ing problem using CCA, and Section 4.4.2 presents the non-linear exten-
sion of matching algorithm using KCCA. The subsequent sections describe
semi-supervised matching and the consensus matching methods, and their
applications. In Section 4.6, few related matching methods are discussed
and compared with the matching method described in this thesis.

Finally, Section 5 concludes the thesis and discusses possible future
research directions based on the work proposed in this thesis.



12 1 Introduction



Chapter 2

Learning from data

The core aim of machine learning is to build intelligent systems that can
perform real world task in a robust and adaptive way. In order to build
such a system, the basic idea is to provide a lot of examples to the system
to make it learn the particular desired behavior. As an example, consider
the task of face recognition where the task is to identify faces given an
image (Turk and Pentland, 1991). The system is trained to identify a face
by giving it examples; images with faces and images without faces. This is
called learning. Once the system is trained, it should be able to identify a
face given a new image.

Learning, in the context of this thesis, is a task of finding regularities
or patterns in data, which is a collection of observations. In learning, we
typically define a model to fit to the given data with respect to model
parameters, for instance, maximizing likelihood or minimizing some cost
function. The learned model can be used to predict the behavior of a new
sample or to infer the underlying pattern of the given data. For instance,
the task could be to label a new image by either of the pre-defined cate-
gories: The image has a face, or the image does not have a face. This is
called classification. Such learning techniques can be applied in a variety
of applications, for example, spam detection, speech recognition, financial
prediction, fraud detection, medical diagnosis, and game playing.

In probabilistic or statistical learning, we assume that the data is gen-
erated by an underlying distribution. The generating distribution contains
all the information we may need but it is not possible to access that dis-
tribution directly. The underlying distribution can be inferred through the
training samples which are assumed to be independently and identically
distributed. The task is to define a function space, also called a model fam-
ily, according to the prior information, and to learn a function (or model)
from the functional space that describes the test data well.

13



14 2 Learning from data

2.1 Notation

In this thesis, the collection of N observations is represented by the set of
vectors {x1,x2, . . . ,xN}, also called a training set. Each observation is an
instance of a random variable x drawn independently from an unknown
probability distribution p(x). Here, each observation xi is represented as a
D-dimensional vector, where each element of the vector is called a feature.
The collection of observations (or samples) can be represented as a data
matrix X ∈ R

N×D with N rows and D columns. That is, each observation
is represented as a row, and feature as a column in the data matrix.

2.2 Model complexity

The complexity of a good model depends on the dimensionality of the data.
For instance, if the dimensionality D is small, the underlying pattern in the
data is relatively simpler, and we need few parameters to define a model.
When the data dimensionality D is higher, more number of parameters are
needed to define a model in order to infer the underlying pattern. That
is, a more complex model is needed for high dimensional data. In a simple
case, when N ≫ D, the task of learning is relatively easier. The problem of
large p, small n appears when the dimensionality is high and the number
of samples is smaller. Here, n represents the number of samples N , and p
represents the dimensionality D.

2.3 Generalization ability of model

In practice, the available training data is often just a fraction of what would
be needed to really explain the underlying phenomenon we aim to model.
One of the main problems is thus to build a model that not only describes
the data well but also explains the underlying distribution, or phenomenon.
The trained model should also be able to correctly characterize the new
samples that were not available for the learning; such samples comprise the
test set. The ability of a model to correctly characterize the test sample
is called generalization. For instance in the task of face recognition, the
trained model should identify the faces in the new unseen images.

A model is called over-fitted or overlearned if it explains the training
data well but does not generalize to the test data. In over-fitting, the model
not only learns the underlying distribution but also learns the noise in the
training data. Hence, the predictive ability of the model to the test data
becomes poor. The models tend to overfit when the ratio of N to MC be-
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comes smaller, where Mc is the number of model parameters. The number
of model parameters may also increase as the dimensionality D of the data
grows. Typical solutions to avoid overlearning includes adding a regular-
ization term, or restricting the complexity of the model, or preprocessing
the data to reduce dimensionality.

Generalization ability of a model and the issue of overfitting are very
important issues in machine learning, and many techniques have been devel-
oped, for instance, cross-validation and bootstrapping to solve these issues.
The basic idea is to create a validation data out of the training data. The
model can be trained on remaining data and the validation data can be
used to check the generalization ability.

In cross-validation, the model is repeatedly validated on a subset of
training data while trained on the remaining data. There are many ways of
choosing a subset for the validation. In K-fold cross-validation (Bengio and
Grandvalet, 2004, See), the training data is divided into K parts; one of the
K parts is used for validation at a time while the rest are used for learning.
In leave-one-out cross-validation, only one sample is left out for validation
and the rest are used for training repeatedly; this is particularly useful if
the data are scarce. The model with the best predictive performance based
on cross-validation is selected.

In bootstrapping, the main idea is to create new data sets by re-sampling
observations with replacement from the original data set. The generaliza-
tion ability can be evaluated by looking at the variability of predictions
between different bootstrap data sets. A detailed description of bootstrap-
ping can be found in (Efron and Tibshirani, 1993).

One major drawback with methods like cross-validation or bootstrap-
ping that repeatedly use a validation set to measure generalization ability is
that the number of training runs may grow exponentially as the number of
model parameters grows. Moreover, if the model is itself computationally
expensive, multiple training runs may not be feasible. Approaches based on
“information criteria” provide methods that do not need multiple training
runs, and avoid overlearning by adding a penalty term for more complex
models. For instance, Akaike information criterion (AIC) by Akaike (1974)
and Bayesian information criterion (BIC) by Schwarz (1978) avoid the bias
due to overfitting by adding a penalty to the maximum likelihood; hence
they tend to favor a simpler model.
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2.4 Learning setups

The problem of learning can be divided into different categories based on the
application and available data. Suppose we are given a data set {xi, yi}Ni=1,
where xi ∈ R

D is a sample and yi is the corresponding label. If the labels
yi of the training samples are known, the learning problem is known as
supervised learning where the task is to predict the label of a new sample.
If the labels are discrete, the problem is known as classification problem,
and if the labels are continuous, it is called a regression problem.

The learning problem where the labels of training samples are not known
or in some cases the notion of labels may not even exist is called unsuper-
vised learning. Examples of unsupervised learning include finding groups
of similar samples, also known as clustering, or determining the underlying
distribution of the sample, known as density estimation. Another impor-
tant learning setup is the semi-supervised learning which is a hybrid of
supervised and unsupervised learning tasks. In semisupervised learning,
labels are known only for a fraction of training samples. Chapelle et al.
(2006) provides a detailed overview of semi-supervised learning and its ap-
plications.



Chapter 3

Multi-view learning

The fundamental aim of using more than one source of information is usu-
ally to achieve a more comprehensive understanding of a task, a concept or
a phenomenon. With the rapid advancement of technology, huge amount of
data is being generated and stored in different parts of world, and in many
cases, the generated data concern a similar or related objective. Combining
existing data sources about related concepts not only leads to a better un-
derstanding, but also saves valuable resources in terms of time, money and
manpower for data generation. In biological science, for instance, several
research groups might be working on a particular disease under different
conditions and from different perspectives. Combining results and data
from such studies may lead to a better understanding of the task.

Integrating information from different sources can be described in many
contexts. For instance, it could refer to effectively storing, indexing, or re-
trieving data sets from different sources. As an example, combining multi-
ple sources could refer to combining several databases into a single unified
view. Data warehousing is a general term for combining different databases
into a single queriable schema. Examples of database integration include
combining databases of two merging companies, or web services that com-
bine publicly available databases. Database integration is however not con-
sidered in this work. In this thesis, combining information from multiple
sources refers to the task of learning from multiple data sets. The idea is
to utilize relevant information from multiple data sets in order to improve
the learning task.

Combining information from multiple sources has recently attracted a
lot of interest in the machine learning community (Rüping and Scheffer,
2005; Hardoon et al., 2009; Cesa-Bianchi et al., 2010). Learning from mul-
tiple sources refers to the problem of analyzing data represented by multiple
views of the same underlying phenomenon. It has been studied under dif-
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ferent names, for instance, multi-view learning, multi-task learning, data
fusion and transfer learning. These concepts differ according to the nature
of the learning task and assumptions about the dependency between the
sources. The underlying idea is to use information from multiple sources to
improve the generalization ability of the learned model. One of the impor-
tant questions is to decide on how the information from multiple sources can
be combined, and it becomes more challenging in an unsupervised setting.

In this thesis, I consider the unsupervised learning task from multiple
sources where each source represents a different view of the data. Such
methods can be categorized under the term multi-view learning. An ap-
proach that uses statistical dependency between views to combine multiple
views for learning is proposed. In the rest of this section, a general overview
of multi-view learning methods is given. Next, different approaches to com-
bine multiple views for learning has been described. Finally, the use of
dependency between views for multi-view learning methods is discussed in
Section 3.1.

Multi-view learning is a task of learning from instances represented by
multiple independent views or sets of features. The underlying assumption
in such methods is that additional views of the related concept can be in-
corporated in the task of learning to improve the predictive performance.
Examples include: web pages can be classified based on their content, but
the accuracy of classification can be improved when using the content on
hyperlinks (Blum and Mitchell, 1998); a biological function can be better
understood by combining heterogeneous biological data, for instance, gene
measurements, protein measurements, metabolomics and interaction data;
explicit or implicit feedback of user can be used to improve search result, or
image ranking (Pasupa et al., 2009); the performance of automatic speech
recognition can be improved using facial visual information (Potamianos
et al., 2003); in collaborative filtering systems, the performance of a rec-
ommender system can be improved by combining movie ratings with the
content data, genre of the movie (Williamson and Ghahramani, 2008).

Multi-view learning methods have been studied under different names
and in different settings. Blum and Mitchell (1998) proposed a semi-supervi-
sed approach, called co-training, that allows using unlabeled data to aug-
ment the smaller set of labeled data for training when two distinct and
redundant views for each sample are present. Here, it is assumed that
either view is sufficient for learning if enough labeled data is available. Co-
training was closely related to an earlier rule-based approach by Yarowsky
(1995) that utilized unlabeled data in the context of the word-sense disam-
biguation problem. Both approaches assumed that a classifier generalizes
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better if it is based on maximizing the agreement between two views, and
this was later justified by Dasgupta et al. (2001).

Combined clustering

Consensus function

Combined clustering

Data source 2 Data source 1Data source 1

Clustering 2Clustering 1

Combined data source

Data source 2

Clustering by data fusionCo−training based clustering1. 2.

Figure 3.1: Illustration of two types of multi-view learning. (1) First sub-
figure shows co-training based learning for a clustering task. Each view is
separately partitioned using a clustering algorithm, and then a consensus
is defined by combining the two partitions. (2) Second figure shows multi-
view learning based on data fusion. A combined representation of all views
is obtained, and clustering is done on the combined representation.

Extending the concept of co-training, Bickel and Scheffer (2004) pre-
sented a multi-view clustering algorithm where class variables were replaced
by mixture coefficients. Figure 3.1 illustrates the concept of co-training in
the context of clustering. It was empirically shown in (Bickel and Scheffer,
2004) that learning based on agreement between different views, even if they
are randomly partitioned, is better than learning based on a single view.
Approaches based on co-training learn a model on each view separately,
and combine the models by defining an agreement between them.

Another approach to learning from multiple sources is to combine the
views together prior to applying any learning method as shown in Fig-
ure 3.1. The important question here is how to combine multiple views
together. If all the views are equally relevant and useful, a combined view
can be obtained by averaging over all the views. Another option will be to
weight each view based on its relevance for the given task. In a supervised
problem, for instance in classification, views can be combined such that the
classification accuracy is improved. Lanckriet et al. (2004) used kernel ma-
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trices to represent heterogeneous genomic data, and obtained the combined
representation as a linear combination of kernel matrices for a classification
task. The problem of learning the linear combinations of kernel matrices
in the context of classification is known as Multiple kernel learning (MKL),
and has been further studied by Bach et al. (2004); Sonnenburg et al. (2006);
Rakotomamonjy et al. (2008). In a recent study, Pasupa et al. (2009) have
empirically shown that the task of image search can be improved by using
a linear combination of image features with the features extracted from eye
movements.

In both types of multi-view learning approaches shown in Figure 3.1,
the underlying assumption is to maximize the consensus between differ-
ent views using some definition of consensus. Multi-view learning in an
unsupervised setting is considered in this thesis, and a criterion based on
statistical dependency to define consensus between multiple views is pro-
posed. Section 3.1 describes our approach of multi-view learning by mod-
eling statistical dependency between views. The subsequent sections give
an overview of various measures of dependency and the methods to model
statistical dependency. Section 3.4 describes the unsupervised data fusion
approach proposed in the Publication 1 and section 3.5 describes the novel
evaluation approach to compare different vector representations for bilin-
gual corpora proposed in the Publication 2.

3.1 Multi-view learning using statistical depen-
dency

In this thesis, multi-view learning methods in an unsupervised setting when
the data are represented by multiple independent views are discussed. One
of the important questions in multi-view learning is how to define the agree-
ment between the views. Different approaches have used different criteria to
define the agreement. In a supervised setting, defining agreement is rather
well defined. For instance, in a classification task, the classifiers based on
different views should agree with each other (Yarowsky, 1995; Blum and
Mitchell, 1998; Dasgupta et al., 2001). In an unsupervised learning, it is,
however, not straightforward to define or search for agreement between
views due to not having a clear hypothesis. Multi-view learning methods
in this thesis use statistical dependency between the views to define the
agreement between them. This approach is useful when the information
shared between the views is more interesting than the information specific
to any of the views.

The concept of using statistical dependency to learn from multiple views



3.1 Multi-view learning using statistical dependency 21

has recently attracted the attention of researchers in many application ar-
eas, but it has not been fully matured yet. Nikkilä et al. (2005) used CCA
to find dependency between expression measurements of yeast under differ-
ent stress treatments in order to study the environmental stress response in
yeast. Kernel CCA is used to detect dependencies between images and their
annotations by Hardoon et al. (2004); Farquhar et al. (2006) for content-
based image retrieval. Li and Shawe-Taylor (2006) used KCCA to learn
semantic representation between documents in Japanese and English for
cross-language information retrieval and document classification. In this
thesis, the concept of learning based on statistical dependencies is formally
developed, and applied to several learning tasks.

Unlike the assumption in the unsupervised multi-view approach by (Bickel
and Scheffer, 2004), the multi-view approach in this thesis does not assume
that each view is sufficient for the task, and do not model everything that
is present in each view. Here, it is assumed that each view may have many
kind of regularities or information and the information which is shared by
all the views is more interesting or relevant. In this thesis, statistical de-
pendency is used as a definition of what is shared between multiple views.
This setting is slightly different from traditional multi-view learning in that
each view may not be sufficient for learning, and may lead to misleading
models. Thus, combining multiple views by maximizing statistical depen-
dencies helps the learning task by complementing information from each
view. Formally, we study multi-view learning methods by maximizing sta-
tistical dependencies between views, hence maximizing agreement between
them.

Another important reason for modeling dependencies between the views
is the noise reduction. In practice, the data may contain noise that could
be either due to measurement error, or some other kind of variation. The
noise can be assumed to be independent between the samples. In multi-
view setting when the sets of features are independent, the noise can also be
assumed to be independent between the views. Looking for dependencies
between the views is analogous to averaging over the several views; instead
of simply averaging over views a more general feature mapping based on
dependency maximization is adopted for noise reduction.

All the multi-view approaches proposed in this thesis are based on max-
imizing statistical dependency between views. In the next Section 3.2, vari-
ous measures of dependency are described, and methods to model statistical
dependencies between multiple views are discussed in 3.3.



22 3 Multi-view learning

3.2 Measures of dependency

In this thesis, by dependency we mean the relationship between two or
more random variables, or the deviation from the condition of indepen-
dence. Two random variables x and y are independent if and only if their
joint probability p(x,y) can be written as a product of their marginal prob-
abilities, that is, p(x,y) = p(x)p(y). Note that the independence of ran-
dom variables is a binary quantity, while the dependence between random
variables is a continuous quantity, that is, there are different degrees of
dependence. The notion of independence can be easily generalized to more
than two random variables.

3.2.1 Mutual information

Mutual information quantifies the amount of information shared between
two random variables. In other words, it represents the reduction of uncer-
tainty about the value of one random variable due the knowledge of value
of other random variable.

In case of discrete random variables, mutual information is defined as

I(X,Y) = ΣxΣyp(x,y) log
p(x,y)

p(x)p(y)
, (3.1)

where the summation is over all possible values of X and Y. In case of
continuous random variables, the summation is replaced by integrals and
p(x,y) denotes the joint probability density. It is clear that if the vari-
ables are independent, that is p(x,y) = p(x)p(y), the mutual information
becomes zero, and vice versa. Also, mutual information is symmetric.

Mutual information can be interpreted through the concepts of entropy
and conditional entropy. Entropy is a measure of uncertainty of a random
variable. If H(X) is the entropy of X, then by H(X|Y) we mean the
conditional entropy which is a measure of uncertainty about X, given Y;
equivalently, the measure of information required to describe X, given Y.
Intuitively, mutual information can be expressed in terms of entropies,

I(X,Y) = H(X) −H(X|Y), (3.2)

which is the reduction of uncertainty about X given Y. Equivalently, it
can be expressed as,

I(X,Y) = H(Y) −H(Y|X)

= H(X) + H(Y) −H(X,Y)
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Another interpretation of mutual information is through the concept
of Kullback-Leibler divergence (Kullback and Leibler, 1951), which is a
natural measure of difference between two distributions and is defined as

dKL(p, q) = Σxp(x) log
p(x)

q(x)
,

where p and q are two distributions. The mutual information between X
and Y can be expressed as dKL(p(x,y), p(x)p(y)), where one distribution
assumes the variables to be dependent, and the other does not.

In this thesis, mutual information is considered as a standard measure
of statistical dependence. Due to finite size of sample, it is however not
possible to get an exact and accurate estimation of mutual information.
Hence, other measures of dependency which can be reliably computed from
small sample size are also considered, though they might not correspond to
mutual information.

3.2.2 Correlation

Pearson’s correlation (Pearson, 1896) is a measure of linear dependence, or
degree of association between two univariate random variables. It is defined
as the ratio of covariance of two variables and product of their standard
deviations,

ρxy =
cov(X,Y)

σxσy
.

In practice, the covariance and variances in the formula are replaced by
their sample estimates giving sample correlation coefficient. The value of
correlation coefficient is between -1 and 1. The sign of correlation tells the
nature of association, and the absolute value signifies the strength of associ-
ation. The correlation of -1 or 1 means the variables are linearly dependent.
If the variables are independent, the correlation is 0, but the converse is
not always true. However, for the multivariate Gaussian distribution, the
correlation is zero if and only if the variables are statistically independent.

Also, there is a strong relationship between correlation and mutual in-
formation for multivariate normal distributions. As shown in (Borga, 2001;
Bach and Jordan, 2002), the mutual information and correlation for Gaus-
sian random variables are related as,

I(X,Y) = −1

2
log(1 − ρ2xy).

Hence, correlation can be used as a measure of dependency without loss of
generality for Gaussian variables. This relationship does not hold for other
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distributions, and correlation should merely be regarded as a measure of
linear relationship in that case.

3.2.3 Kernel measure of dependency

There has recently been a lot of interest in using kernel methods to mea-
sure dependence between random variables. Kernel methods allow cap-
turing higher order moments using functions in reproducing kernel Hilbert
spaces to measure dependence. The underlying idea is that if there are
non-linear dependencies between two variables, mapping the variables into
kernel space transforms the nonlinear dependency into linear dependency
which can thus be captured with standard correlation. Figure 3.2 illus-
trates the mapping of data into a kernel space where the nonlinear pattern
transforms into a linear pattern.
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Figure 3.2: The mapping Φ maps the data into a kernel space and trans-
forms the nonlinear pattern into a linear pattern.

Rényi (1959) first suggested using the functional covariance or corre-
lation to measure dependence of random variables. One such measure of
statistical dependence between x and y can be defined as

ρmax = sup
f ,g

corr(f(x),g(x)), (3.3)

where f(x) and g(x) have finite positive variance, and f and g are Borel
measurable. This section gives a brief overview of kernel measures of de-
pendency based on both the correlation and covariance operator.
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Kernel canonical correlation (Bach and Jordan, 2002; Fukumizu et al.,
2007; Leurgans et al., 1993) is a measure of dependency based on the
correlation-operator. Bach and Jordan (2002) defined kernel canonical cor-
relation (KCC) as a regularized spectral norm of the correlation-operator
on reproducing kernel Hilbert spaces (RKHS), and showed that KCC can be
empirically computed as a maximum eigenvalue solution to the generalized
eigenvalue problem. Bach and Jordan (2002) extended the KCC to another
measure of dependence, called kernelized generalized variance (KGV) by
taking into account the whole spectrum of the correlation operator. While
KCC is defined as maximum eigenvalue, KGV is defined in terms of the
product of eigenvalues of the generalized eigenvalue problem. As shown
in (Bach and Jordan, 2002), KGV approaches mutual information up to
second order, expanding around independence.

Gretton et al. (2005b) proposed constrained covariance (COCO) based
on covariance operator, which can again be empirically estimated as maxi-
mum eigenvalue solution to generalized eigenvalue problem. COCO is dif-
ferent from KCC in its normalization which is immaterial at independence.
The regularization parameter in KCC is however not required in COCO,
making it simpler yet equally good measure of dependency (Gretton et al.,
2005b). COCO can be extended to kernelized mutual information (KMI)
by taking into account the whole spectrum of the covariance operator and
KMI is shown to be an upper bound near independence on a Parzen window
estimate of the mutual information (Gretton et al., 2005b).

Another kernel measure of dependence based on a covariance operator
is Hilbert Schmidt Independence Criteria (Gretton et al., 2005a; Fukumizu
et al., 2008). The Hilbert Schmidt Independence Criteria (HSIC) is defined
as the squared Hilbert-Schmidt norm of the entire eigen spectrum of the
covariance operator, and the empirical estimate can be computed as the
trace of the product of Gram matrices (Gretton et al., 2005a). While
KGV and KMI depend on both the data distribution and the choice of
kernel, Gretton et al. (2005a) showed that HSIC, in the limit of infinite data,
depends only on the probability densities of variables assuming richness of
the RKHSs, despite being defined in terms of kernel. The connection to
mutual information is however not clear in the case of HSIC.

3.3 Maximization of mutual dependencies

This section describes the methods for modeling dependency between multi-
variate data. Canonical correlation analysis (CCA) and its kernel extension
called kernel canonical correlation analysis (KCCA) are used to model de-
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pendency in this thesis. The following subsections describe the two methods
and discuss their properties.

3.3.1 Canonical correlation analysis

Canonical correlation analysis (Hotelling, 1936) is a classical method to
find linear relationships between two sets of random variables. Given two
random vectors x and y of dimensions Dx and Dy, CCA finds a pair of
linear transformations such that one component within each set of trans-
formed variables is correlated with a single component in the other set.
The correlation between the corresponding components is called canonical
correlation, and there can be at most D = min(Dx, Dy) non-zero canon-
ical correlations. The first canonical correlation is defined as: find linear
transformations xTwx and yTwy such that the correlation between them
is maximized,

ρ = argmax
wx,wy

corr(xTwx,y
Twy) (3.4)

= argmax
wx,wy

E[wT
x xy

Twy]√
E[wT

x xx
Twx]E[wT

y yy
Twy]

, (3.5)

where ρ is the canonical correlation. The next canonical correlation can
be computed recursively from the next pair of CCA components such that
they are orthogonal to the previous pair of components, that is, 〈ai,aj〉 =
〈bi,bj〉 = δij , i, j ∈ 1, . . . , D, where ai = xTwi

x, bi = yTwi
y and 〈·, ·〉 is

the inner product of two vectors. In practice, the expectations in Eq. (3.5)
are replaced by the sample-based estimates from the observation matrices
X = [x1, . . . ,xN ] andY = [y1, . . . ,yN ]. The samples xi and yi can be
thought of as the measurements on N objects describing different views of
these objects. Given sample-based estimates, Eq. (3.5) can be written as

ρ = argmax
wx,wy

wT
xCxywy√

wT
xCxxwx

√
wT

y Cyywy

, (3.6)

where Cxy = CT
yx is the between-set covariance matrix, and Cxx and Cyy

are the within-set covariance matrices of random variables x and y. The
total covariance matrix is

C =

[
Cxx Cxy

Cyx Cyy

]

. Note that the solution of Eq. (3.6) does not change by re-scaling wx, or
wy either separately or together, and hence the CCA optimization problem
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in Eq. (3.6) can be solved by optimizing the numerator with respect to the
conditions

wT
xCxxwx = 1,

wT
y Cyywy = 1.

As shown in (Hardoon et al., 2004), the corresponding Lagrangian is

 L(λ,wx,wy) = wT
xCxywy −

λx

2
(wT

xCxxwx − 1) − λy

2
(wT

y Cyywy − 1),

which leads to the following eigenvalue problems

C−1
xxCxyC

−1
yy Cyxwx = λ2wx

C−1
yy CyxC

−1
xxCxywy = λ2wy,

assuming Cxx and Cyy are invertible. It gives d positive eigenvalues λ2
1 ≥

· · · ≥ λ2
d, and the canonical correlation is the square root of the eigen values,

that is ρi = λi. We see that CCA reduces to the following generalized
eigenvalue problem:

(
Cxx Cxy

Cyx Cyy

)(
wx

wy

)
= (1 + ρ)

(
Cxx 0

0 Cyy

)(
wx

wy

)
, (3.7)

which gives Dx +Dy eigen values 1 + ρ1, 1 − ρ1, . . . , 1 + ρd, 1 − ρd, 1, . . . , 1.
Note that the problem of finding the maximal generalized eigenvalue 1 +
ρmax is equivalent to finding the minimal generalized eigenvalue 1 − ρmax,
where ρmax is the maximal canonical correlation. The quantity 1− ρmax is
always bounded between zero and one, hence solving the minimal general-
ized eigenvalue problem provides a natural upgrade when extending CCA
to more than two variables.

3.3.2 Kernel Canonical Correlation Analysis

CCA finds the linear relationship between two data sets using linear pro-
jections, but it is not able to capture non-linear relationships. Several
extensions of CCA have been proposed that use non-linear projections to
capture non-linear relationships. One of the approaches to extend CCA is
to use kernel functions, called kernel canonical correlation analysis (Bach
and Jordan, 2002; Hardoon et al., 2004; Kuss and Graepel, 2003). KCCA
exploits the non-linear relationships by projecting the data onto a higher
dimensional space before performing classical CCA; this process is known
as the kernel trick. In this section, KCCA and its properties are briefly
described.
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Definition A kernel is a function k that for all x, z ∈ X satisfies

k(x, z) = 〈φ(x),φ(z)〉,

where φ is a mapping from X to a (inner product) feature space F

φ : x 7→ φ(x) ∈ F.

Let φx : X 7→ Fx and φy : Y 7→ Fy denote the feature space mappings
with corresponding kernel functions kx(xi,xj) = 〈φx(xi),φx(xj)〉,xi,xj ∈
X, and ky(yi,yj) = 〈φy(yi),φy(yj)〉,yi,yj ∈ Y . Intuitively, performing
KCCA is equivalent to performing CCA for variables in the feature space,
that is, performing CCA on φx(x) and φy(y). Following the lines of Bach
and Jordan (2002), the canonical correlation between φx(x) and φy(y) can
be defined as

ρ = argmax
(fx,fy)∈Fx×Fy

corr(〈φx(x), fx〉, 〈φy(y), fy〉), (3.8)

where fx ∈ Fx and fy ∈ Fy.

Given the samples X = [x1, . . . ,xN ] and Y = [y1, . . . ,yN ], the em-
pirical estimate of Eq. (3.8) can be computed based on empirical covari-
ances and the empirical canonical correlation is denoted as ρ̂. The samples
mapped to the feature spaces can be represented as Φx = [φx(x1), . . . ,φx(xN )]
and Φy = [φy(y1), . . . ,φy(yN )].

Given fixed fx and fy, the empirical covariance of the projections in
feature spaces can be written as

ˆcov(〈φx(x), fx〉, 〈φy(y), fy〉) =
1

N

N∑

i=1

〈φx(xi), fx〉〈φy(yi), fy〉. (3.9)

Let Sx and Sy be the spaces linearly spanned by φx(xi) and φy(yi).
The functions fx and fy can then be expressed as

fx =
N∑

i=1

α(i)
x φx(xi) + f⊥

x

fy =
N∑

i=1

α(i)
y φy(yi) + f⊥

y ,
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where f⊥
x and f⊥

y are orthogonal to Sx and Sy, respectively, and αx,αy ∈
R
N . Equation (3.9) becomes

ĉov(〈φx(x), fx〉, 〈φy(y), fy〉) (3.10)

=
1

N

N∑

i=1

〈φx(xi),
N∑

j=1

α(i)
x φx(xj)〉〈φy(yi),

N∑

q=1

α(q)
y φy(yq)〉

=
1

N

N∑

i=1

N∑

j=1

N∑

q=1

α(i)
x Kx(xi,xj)Ky(yi,yq)α

(q)
y

=
1

N
αxKxKyαy, (3.11)

where Kx and Ky are Gram matrices for X and Y, respectively. Similarly,
we can compute within-set variances,

v̂ar(〈φx(x)〉) =
1

N
αxKxKxαx,

v̂ar(〈φy(y)〉) =
1

N
αyKyKyαy.

The KCCA problem in Eq. (3.8) can be represented as

ρ̂ = argmax
αx,αy∈R

N

1
NαxKxKyαy

( 1
NαxK2

xαx)
1

2 ( 1
NαyK2

yαy)
1

2

. (3.12)

This is equivalent to performing CCA on data whose covariance matrices
are the Gram matrices Kx and Ky. Hence, Eq. (3.12) can be formulated
as a generalized eigenvalue problem

(
0 KxKy

KyKx 0

)(
αx

αy

)
= ρ

(
K2

x 0
0 K2

y

)(
αx

αy

)
. (3.13)

We assume that the Gram matrices are computed over centered data. If Kx

and Ky are Gram matrices of non-centered data, it is possible to compute
Gram matrices of centered data as shown in (Schölkopf et al., 1998).

3.3.3 Regularization of (K)CCA

The KCCA implementation by applying CCA on Gram matrices has certain
drawbacks. As shown in (Bach and Jordan, 2002; Hardoon et al., 2004),
if the Gram matrices Kx and Ky are invertible, the KCCA will return
a canonical correlation that is always one irrespective of what the Gram
matrices are. The naive kernelization of CCA in Eq. (3.13) leads to trivial
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learning in general. In order to avoid trivial learning, the norms of fx and
fy are penalized to control the flexibility of the projection mappings. The
regularized version of KCCA can be equivalently defined as

argmax
αx,αy∈R

N

1
NαxKxKyαy

( 1
Nαx(Kx + Nκ

2 I)2αx)
1

2 ( 1
Nαy(Ky + Nκ

2 I)2αy)
1

2

, (3.14)

where κ is a small positive quantity. The optimization problem for reg-
ularized KCCA can be formulated as the following generalized eigenvalue
problem

(
0 KxKy

KyKx 0

)(
αx

αy

)
= ρ

(
(Kx + Nκ

2 I)2 0

0 (Ky + Nκ
2 I)2

)(
αx

αy

)
.

(3.15)
The regularization parameter κ, in addition to inducing control of over-
fitting, also enhances the numerical stability of the solution. It has been
shown that regularized KCCA generalizes better than the naive KCCA
implementation (Bach and Jordan, 2002; Hardoon et al., 2004).

The similar approach of regularization can also be used in linear CCA,
where the sample canonical correlation heavily depends on the number of
samples and dimensionality of random variables. A standard assumption
in classical CCA is that N ≫ Dx+Dy. When the ratio N

Dx+Dy
is small, the

sample estimate of covariance matrix of the vectors (xi,yi), i ∈ 1, . . . , N
may be ill-conditioned which leads to the trivial CCA solution. Also,
within-set covariance matrices Cxx and Cyy are assumed to be invertible in
Eq. (3.7), due to high dimensionality they can however be singular or near-
singular which leads to unreliable estimates of their inverses. In (Leurgans
et al., 1993), a regularized version of CCA is proposed based on smoothing
the constraints wT

xCxxwx = 1 and wT
y Cyywy = 1 by adding a roughness

penalty which is similar to the ridge-regression type regularization proposed
by (Bie and Moor, 2003); the regularized version can be formulated as an
eigenvalue problem by adding a small positive quantity γ to the diagonals
to Cxx and Cyy

(
0 Cxy

Cyx 0

)(
wx

wy

)
= ρ

(
Cxx + γI 0

0 Cyy + γI

)(
wx

wy

)
. (3.16)

3.3.4 Generalized canonical correlation analysis

Canonical correlation analysis, originally proposed for two multivariate
random variables (Hotelling, 1936), can be extended to three or more
sets. Kettenring (1971) comprehensively studied different generalizations
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of CCA which were similar to the classical CCA in two ways: they reduce
to Hotelling’s classical CCA when considered for two sets of random vari-
ables, and they find canonical variables, one from each set, to optimize
some function of their correlation matrix. More recently, Bach and Jordan
(2002); Hardoon et al. (2004) described the generalization of (K)CCA to
more than two random variables.

Bach and Jordan (2002) formulated the generalization as an eigenvalue
problem analogous to classical CCA. Suppose Xi, i ∈ 1, . . . ,m denote a
collection of m data sets, where each Xi is a matrix of size N × Di such
that N ≫∑

iDi. The generalized CCA is defined as




C11 . . . C1m
...

...
Cm1 . . . Cmm







w1
...

wm


 = λ




C11 . . . 0
...

...
0 . . . Cmm







w1
...

wm


 ,(3.17)

which is a generalized eigenvalue problem of the form Cw = λDw, similar
to the two-variables case in Eq. (3.7). Here, C is a covariance matrix of
the column-wise concatenation of matrices Xi, and D is a block-diagonal
matrix with Cii, a within-set covariance matrix for each Xi, as a diagonal
element. Unlike the two-variable case, the connection between a generalized
eigenvalue and the canonical correlation is not clear in the case of more
than two variables. Also, the eigenvalues λi ≥ 0 do not appear in pairs
as in the case of CCA with two random variables. As shown by Bach
and Jordan (2002), the minimal generalized eigenvalue is bounded between
[0, 1]; analogous to the two-variable case we can define the first canonical
correlation as the minimal generalized eigenvalue of Cw = λDw in the case
of more than two variables. Note that the maximal generalized eigenvalue
depends on the size of the matrices Xi. The generalized CCA can be
regularized in the same way as in the two-variable case, by replacing Cii

by Cii + κI in Eq (3.17) for all i ∈ 1, . . . ,m.
Generalization of kernel CCA to more than two variables can be de-

scribed as above. Let Ki be the Gram kernel matrix corresponding to the
data matrix Xi ∈ R

N×Di given the feature space mapping φi : Xi 7→ Fi,
where i ∈ 1, . . . ,m. Let Ck denote the mN × mN matrix with blocks
Ci,j
k = KiKj , and let Dk denote a block-diagonal matrix with diagonal

elements K2
i . Analogous to KCCA in case of two variables, generalized

KCCA can be formulated as an generalized eigenvalue problem

Ckα = λαDk. (3.18)

The first kernel canonical correlation can be defined as the minimal gen-
eralized eigenvalue, which is always bounded between zero and one; and it
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is zero if and only if the m variables are pairwise independent (Bach and
Jordan, 2002). The regularized version of generalized KCCA can be defined
in the same way as the two-variable case by replacing K2

i with (Ki + Nκ
2 I)2

in Eq. (3.18).

3.3.5 Properties of CCA

Canonical correlation has a very natural connection to mutual information
if the data are Gaussian. In this section, the connection between CCA and
mutual information in the case of two variables is described, and then it
is extended to the generalized CCA. The relationship of kernel canonical
correlation to the mutual information is also briefly discussed.

Let x and y be two random variables with dimensionality Dx and Dy

respectively. As explained in Section 3.2.1, the mutual information between
x and y can be defined in terms of Kullback-Leibler divergence (Kullback,
1959),

I(x,y) =

∫
p(x,y) log

(
p(x,y)

p(x)p(y)

)
dx dy,

which can, for the normally distributed xand y, be easily computed as:

I(x,y) = −1

2
log

(
det(C)

det(Cxx) det(Cyy)

)
, (3.19)

where Cxx and Cyy are within-set covariance of random Gaussian variables
x and y respectively, and C is covariance matrix of the the vector (x,y).

The term det(C)
det(Cxx) det(Cyy)

is called generalized variance.

Now, the generalized eigenvalue problem for the two-variable case in
Eq. 3.7 is of the form Cx = λDx. If D is invertible, then it can be written
equivalently as an eigenvector problem D−1Cx = λx. Thus, the product
of generalized eigenvalues in Eq. 3.7 is equal to the ratio of determinants
in Eq. 3.19, and we get

I(x,y) = −1

2
log

D∏

i=1

(1 + ρi)(1 − ρi) = −1

2

D∑

i=1

log(1 − ρ2i ), (3.20)

where ρi is the canonical correlation and D = min(Dx, Dy). Thus, in
case of Gaussian variables, the mutual information can be computed using
canonical correlation obtained from CCA.

The relation between CCA and mutual information can be easily ex-
tended to the generalized CCA for more than two variables. Let x1, . . . ,xm
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be m random Gaussian variables of size Di, i ∈ 1, . . . ,m respectively. The
mutual information can be written in terms of generalized variance as

I(x1, . . . ,xm) = −1

2
log

(
detC

detC11 . . . detCmm

)
. (3.21)

The generalized eigenvalue problem in Eq. 3.17 for CCA of more than two
random variables can also be written as a generalized eigenvector problem
D−1Cw = λw, if D is invertible which is a block-diagonal matrix with Cii

as elements. The generalized variance can again be defined as the ratio of
determinants of matrices C and D. Thus, we get

I(x1, . . . ,xm) = −1

2

i=D∑

i=1

log(λi), (3.22)

where λi are the generalized eigen values of Cw = λDw. The I(x1, . . . ,xm)
is known as multi-information.

Given the connection of generalized variance to mutual information in
the case of Gaussian variable, Bach and Jordan (2002) defined the concept
of kernel generalized variance(KGV), also discussed in the Section 3.2.3, as
the product of the eigenvalues of the generalized eigenvalue problem for reg-
ularized KCCA as in Eq. 3.18, or equivalently as the ratio of determinants
of its matrices

KGV =
detCk

detDk
.

The multi-information in the kernel case can be defined as

Îk(K1 . . . ,Km) = −1

2
log(KGV), (3.23)

which has its population counterpart Ik(x1, . . . ,xm) that is actually closely
related to the mutual information between the original non-Gaussian vari-
ables in the input space.

In this thesis, classical CCA is used to compute the mutual infor-
mation in the Gaussian case. In the case of kernel CCA, the quantity
Îk(K1 . . . ,Km) is used as an approximation to mutual information.

3.3.6 Probabilistic CCA

In this section, probabilistic interpretation of CCA is briefly discussed.
The section is concluded by listing advantages and drawbacks of using
probabilistic models in the context of CCA.
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Bach and Jordan (2005); Bie and Moor (2003) introduced the proba-
bilistic interpretation of CCA by assuming an underlying generative model
for the data. Bach and Jordan (2005) presented probabilistic CCA by ex-
tending the logic of probabilistic PCA presented by Tipping and Bishop
(1999). The probabilistic PCA was explained as a factor analysis model
with isotropic covariance matrix, graphical model of factor analysis is shown
in Figure 3.3.

x z

Figure 3.3: Graphical model for factor analysis.

Suppose the data matrix X ∈ R
M×Dx represents M i.i.d samples for

random vector x. PCA is concerned with finding a linear transformation
A ∈ R

Dx×D that makes the data uncorrelated with marginal unit vari-
ances. Tipping and Bishop (1999) showed that the posterior expectation of
z given x based on the maximum likelihood estimates of the parameters
W, µ and σ2 for the model represented by Figure 3.3,

z = N(0, ID)

x|z = N(Wz + µ, σ2ID), σ > 0,W ∈ R
M×D

will yield the same linear subspace as PCA. Here, σ is a variance parameter,
and µ is a mean parameter.

xy

z

Figure 3.4: Graphical model for probabilistic CCA.

Similar to probabilistic PCA, Bach and Jordan (2005) gave a proba-
bilistic interpretation of CCA as a latent variable model for two Gaussian
random variables x ∈ R

1×Dx and y ∈ R
1×Dy . Figure 3.4 shows the graphi-
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cal model for probabilistic CCA, and the model can be described as follows

z = N(0, ID), minDx, Dy ≥ D ≥ 1

x|z = N(Wxz + µx,Ψx)

y|z = N(Wyz + µy,Ψy)

where Wx and Wy are matrices of suitable dimensionalities, and µ and Ψ
represent mean and covariance parameters for each variable. It is shown
in (Bach and Jordan, 2005) that the maximum likelihood estimates of the
parameters Wx, Wy, µx,µy, Ψx and Ψy are given by

Ŵx = CxxUxMx

Ŵy = CyyUyMy

Ψ̂x = Cxx − ŴxŴ
T
x

Ψ̂y = Cyy − ŴyŴ
T
y

µ̂x = µ̃x

µ̂y = µ̃y

Here, Cxx and µ̃x are sample covariance and mean of variable x given M
samples X ∈ R

M×Dx ; similarly for the variable y. The Mx,My ∈ R
D×D

are arbitrary matrices with spectral norms smaller than one and MxM
T
y =

Pd, which is a diagonal matrix of first D canonical correlations, and columns
of Ux,Uy contain corresponding canonical directions. The detailed proof
can be found in the original publication (Bach and Jordan, 2005).

Probabilistic CCA has recently been studied further in many publi-
cations. Archambeau et al. (2006) presented an extension of probabilistic
CCA using Student-t noise distribution; replacing Gaussian distributions
with Student-t distributions makes the model more robust to outliers and
atypical observations. Recently, Viinikanoja et al. (2010) extended it by
presenting a Bayesian solution to the problem. In (Klami and Kaski,
2006, 2007, 2008), the probabilistic interpretation of CCA is motivated
through a generative latent variable model to detect dependencies between
two data sets. While Klami and Kaski (2006, 2008) used an expectation-
maximization (EM) algorithm to compute maximum likelihood, Klami
and Kaski (2007) presented a Bayesian treatment using Gibbs sampling.
Also, a variational Bayes approach to solving probabilistic CCA has been
proposed by Wang (2007).

The probabilistic CCA has certain advantages over traditional CCA.
First, the probabilistic approach provides a better understanding of CCA
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as a model-based method, which makes it possible to use CCA as a compo-
nent in larger model families, for example as a part of a hierarchical model
consisting of smaller probabilistic models. It also leads to generalizations
of CCA to the members of exponential family other than the Gaussian dis-
tribution (Klami et al., 2010). Another advantage of probabilistic CCA
is the possibility of using Bayesian methods which also provide a natural
way of regularization by assigning prior probabilities to the model param-
eters. The quality of different solutions can be characterized through the
likelihood given the observed data.

Despite all the advantages of having a probabilistic model, there are a
few concerns in using probabilistic CCA. First, directly solving the eigen-
value problem in Section 3.3.1 is usually faster and guaranteed to have
a global optimum, while probabilistic CCA is relatively slower. Further-
more, existing solutions to probabilistic CCA do not uniquely determine
the projections and are invariant to arbitrary rotation which, in turn, may
cause problems while interpreting the solutions. Second, the probabilistic
approach as such models everything in the data which in a way violates
the very basic essence of CCA that is to find what is common in data
and ignore dataset-specific variation. As long as the task is to find the
correlating subspaces, maximizing correlation does not seem to make any
explicit assumption on the data and can hence be applied to more complex
data. Probabilistic CCA makes explicit assumptions on the data distribu-
tion. The recent work by Klami et al. (2010) is a step forward to making
probabilistic CCA work in a more general set up. Klami et al. (2010) also
proposed a novel sampler that explicitly marginalizes out the components
specific to data sets but still assumes normal distribution. Hence, proba-
bilistic CCA models needs to be developed further in order to be applied in
more complex data sets. In this thesis, the traditional eigenvalue problem
is used for solving CCA.

3.4 Data fusion by maximizing dependencies

Data fusion, also known as sensor fusion, is a task of combining several data
sources in order to improve the data analysis performance. In a supervised
setting when it is possible to make sufficient modeling assumptions, data
fusion is in principle straightforward. For instance in classification the task
is to combine data sources such that the classification accuracy is improved
(Girolami and Zhong, 2007; Lanckriet et al., 2004). Although the task is
rather well defined in supervised settings, there are still practical challenges
in this task.
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This thesis focuses on the problem of unsupervised data fusion when
the hypotheses are still vague and it is not straightforward how to combine
data sources. An unsupervised data fusion approach is proposed in Pub-
lication 1. The proposed approach combines data sources by maximizing
mutual dependencies between them such that the shared aspects between
them is preserved. This kind of approach is useful in cases where the in-
formation shared by data sources is more interesting than the information
specific to data sources.

In Publication 1, it has been shown that CCA can be used as a tool
for data fusion. We assume vector-valued data sources such that each of
them consists of measurements of the same entity but on different variables,
that is, each source represents a different view on the data. Being a linear
approach, CCA-based data fusion is simple, fast and easily interpretable,
and provides a new way for dimensionality reduction. It also creates a
direction towards building more complex data fusion models based on the
idea of dependency maximization.

An alternative and intuitive approach to CCA can be described as a two-
step procedure: The first step is to pre-process each data source separately
to remove all within-source variation, and the second step is to extract the
variation remained in the collection of all data sources. The first step makes
sure that if the data sources are not dependent, the method in second step
will not extract any information at all. Thus, any information extracted
in the second step is due to the dependencies between data sources. The
proposed data fusion approach is based on this two-step procedure for CCA.

In order to perform the first step, that is, to remove all within-source
information, a traditional procedure called whitening is used. It linearly
transforms the data source such that the transformed data has a unit co-
variance matrix. In practice, the whitening can be performed as

X̄ = C
−

1

2

x X,

where Cx and X̄ denote the covariance and whitened version of X, respec-
tively. In X̄, all dimensions have equal unit variance and are uncorrelated.
The second step is performed by applying principal component analysis
(PCA) to the column-wise concatenation of all the whitened data sources.
PCA (Hotelling, 1933) is a classical linear method to find projections of
maximal variance. Given that all the within-source variation is removed,
PCA can only find the variation which is shared between the data sources.
Figure 3.5 illustrates the two step procedure to data fusion.

Suppose Z =
[
X̄1, . . . X̄p

]
is the column-wise concatenation of p whitened

data sets, where X̄i ∈ R
N×Di . Applying PCA to Z will yield the factoriza-
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X1 X2 X3 X1 X2 X3

 

Original data sets

Features

Whitened data sets Combined representation after 
performing PCA on concatenation
of whitened data sets

thi   sample

Z

Figure 3.5: Illustration of data fusion as a two-step procedure that pre-
serves the shared information between the data sources. The first step
whitens each data source. Second step performs PCA on the column-wise
concatenation of whitened data sources in order to create a combined rep-
resentation.

tion

Cz = VΛVT , (3.24)

where Cz is the covariance matrix of Z, the orthonormal matrix V contains
the eigenvectors and Λ is a diagonal matrix of projection variances. The
combined representation can be obtained by projecting Z onto the first D
eigenvectors VD corresponding to the D largest eigenvalues

FD = ZVD, (3.25)

where FD ∈ R
N×D is the fused representation.

Given the concatenation of non-independent whitened data sources, the
PCA directions of highest variations must correspond to the dependencies
between different preprocessed data sources. This is equivalent to mod-
eling the mutual dependencies between the data sources. An alternative
approach would be to model all the information by applying PCA on the
concatenation of the original data sources, but that would not capture the
dependencies between the data sources.

The two-step procedure described here is equivalent to applying clas-
sical CCA on the data sources. The equivalence of the two procedures
has been shown in the Publication 1. Applying CCA to the data sources
gives separate representations for each data source in the form of canonical
variates. As shown in Publication 1, the final data fusion solution can be
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obtained by summing the canonical variates as

FD = XWx + YWy, (3.26)

where Wx ∈ R
DX×D and Wy ∈ R

Dy×D are the CCA projection matrices
of the chosen dimensionality, D. The dimensionality of the combined rep-
resentation FD is RN×D. The result can be easily generalized to more than
two data sources as shown in the Publication 1.

The remaining task is to choose the optimal dimensionality for the pro-
jections. The total dimensionality of the combined representation will be
the sum of dimensionalities of all data sources. In practice, the first few
dimensions will, however, contain most of the shared information, and the
rest of the dimensions may just represent noise. Intuitively, the optimal
number of dimensions should be high enough to keep most of the shared
information and low enough to avoid overfitting.

In Publication 1, a method based on randomization to choose the op-
timal dimensionality of projections is proposed. The method works by
increasing the dimensionality one at a time by testing that the new dimen-
sion captures the shared variation. The randomization test compares the
shared variance along the new dimension to the shared variance we would
get under the null-hypothesis of mutual independency. The final dimen-
sionality is detected when the shared variance does not differ significantly
from the null-hypothesis. The details of the randomization test can be
found in Publication 1.

Parallel and serial feature combination

Using CCA to combine data sets can be explained as follows: Find a new
feature representation for each source that are mutually informative of each
other, and then combine the extracted features together to get a fused
representation. There are two ways in which the extracted features can be
combined, namely, parallel combination and serial combination.

Suppose ux = Xwx and uy = Ywy are the extracted features for X and
Y respectively, where wx and wy represents a pair of CCA components.
In parallel combination, the combined representation can be obtained by
simply adding the two feature vectors, f = ux + uy, where f ∈ R

N×1. If
we use the first D pairs of CCA components, the combined representation
will also be D-dimensional as shown in Eq. 3.26.

In serial combination, the features are serially concatenated to form
a supervector. Using the first D pairs of CCA components, the serially
combined feature representation is

FD =
[
XWx YWy

]
, (3.27)
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where FD ∈ R
N×2D. The dimensionality of the final representation in

the case of serial combination is the sum of the dimensionalities of the
projections for each data set.

In this thesis, the parallel combination of features is used for data fusion,
and it comes naturally while projecting the concatenation of whitened data
set onto the first D eigenvectors as in Eq. 3.25, which is equivalent to adding
the CCA projections in Eq. 3.26. Peng et al. (2010) compared the parallel
and serial combination of features for classification purposes using various
CCA models including new CCA algorithms Local Discrimination CCA
(LDCCA) and its kernel version KLDCCA.

Although the main task in (Peng et al., 2010) was to compare (K)LDCCA
against other methods like locality preserving CCA (LPCCA), KCCA, CCA
and SVM-2K (Farquhar et al., 2006), the classification accuracy in the ex-
periment was also computed for both of the combinations strategies, par-
allel and serial. The results in Peng et al. (2010) show that the perfor-
mance of both fusion methods was comparable. While parallel combina-
tion (94.81%, classification accuracy) slightly outperforms serial combina-
tion (93.33%) in KLDCCA, the serial combination (93.61%) was slightly
better than the parallel (91.99%) in LDCCA. For other methods, the dif-
ference between the serial and parallel feature combinations was small, and
each time serial combination was little better than the parallel combina-
tion. The numbers for the classification accuracies are borrowed from Peng
et al. (2010).

Based on the results in Peng et al. (2010), it can be concluded that
any strategy to combine features can be chosen because the differences
in performances are small. The parallel combination should, however, be
preferred because the dimensionality of combined representation is lower in
the parallel combination than the serial combination.

Regularizing CCA through whitening matrices

As explained in Section 3.3.3, CCA overlearns in case of high-dimensional
data and there are ways to regularize it by adding a small quantity to the
diagonal of variance matrix or equivalently, through ridge-regression type
regularization. In Publication 1, a different regularization based on the
whitening matrix is used. The whitening matrix, C−

1

2 , is the square root
of the inverse of corresponding covariance matrix C. This approach, in our
opinion, is a novel contribution in the context of regularizing CCA.

The problem in the form of numerical instability arises due to singular
or near-singular covariance matrix during its inversion. The regularization
methods described in Section 3.3.3 add a small quantity in the diagonal
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of covariance matrix to avoid singularity. The proposed approach ignores
the dimensions with zero or near-zero contribution to the total variance
of the the covariance matrix during matrix inversion. The dimensions in
covariance matrix that do not contribute significantly to the total variance
can also be seen as less informative or noise. In practice, a threshold is
defined as a proportion of contribution to the total variance, and the di-
mensions which collectively contribute less than the defined threshold are
ignored during inversion. This regularization strategy is implemented in
the R-package for data fusion released along the Publication 1.

3.5 Evaluating sentence representation using CCA

The representation of documents in a vector space model (VSM) is one of
the fundamental tasks in information retrieval (IR) (Salton et al., 1975).
Vector space model represents each document as a feature vector where
each feature is a term, for instance, a word. The performance in many
information retrieval tasks, such as ranking of documents based on a query
and document classification, depends on how well the VSM represents the
documents. The parameterization of VSM involves a number of crucial
choices, for instance, the type of distributional information to construct
the vector space (Lavelli et al., 2004), weighting and normalization strate-
gies (Nakov et al., 2001) and the dimensionality reduction method for the
space (Bingham and Mannila, 2001). Although the choice of parameters in
a VSM has been widely studied, methodologies to evaluate different vector
representations are still lacking. In this thesis, a novel evaluation approach
to compare vector space models for sentence-aligned bilingual corpora is
presented.

Consider a situation where we want to find an optimal vector repre-
sentation for a given task, for instance, mate retrieval as a cross-language
IR task (Vinokourov et al., 2003a). A simple approach is to compare all
possible vector representations based on the performance in the task at
hand, and choose the vector representation which gives the best perfor-
mance. Such approaches are called indirect evaluation (Sahlgren, 2006).
The indirect evaluations are rather time consuming, if the application set-
ting is complex. Hence, it is not possible to compare a large number of
parameterizations using indirect approaches. A direct evaluation method
is needed which can quickly compare a large number of parameterizations
to evaluate the goodness of different representations for a given application.

In Publication 2, an evaluation method based on CCA to compare dif-
ferent vector representations of sentences in parallel bilingual corpora is
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presented. The parallel documents in two languages can be seen as two dif-
ferent views of the same underlying semantics. It is assumed that a good
vector representation should reflect the underlying semantics. For example,
vector representation for sentence-aligned parallel documents should cap-
ture the meaning of the sentences. The proposed evaluation method uses
statistical dependency between parallel documents to capture the underly-
ing semantics. The idea is to compute the linear dependency between par-
allel documents using CCA for different vector representations, and choose
the one with highest linear dependency.

KCCA has already been used to infer semantic representation between
multimodal information sources (Vinokourov et al., 2003a; Hardoon et al.,
2004). Given feature spaces for parallel documents in two languages, Vi-
nokourov et al. (2003a) used KCCA to infer semantic representations by
finding subspaces that are maximally correlated. They assumed that any
correlation between two feature spaces is due to the underlying semantic
similarity. In this work, the correlation, that is, the underlying semantic
similarity, is used as an evaluation measure to compare different parame-
terizations of feature spaces for the bilingual corpora. In Publication 2, the
VSMs for sentences are considered to demonstrate the proposed evaluation
approach. Many natural language processing tasks, such as machine trans-
lation and question answering, use sentences as the basic units. However,
there is relatively little research on vector representations of sentences. It
is worth noticing that the proposed method can also be used for vector
space models in general, and is not restricted to the vector representation
of sentences only. The method is language-independent and only requires
feature representations extracted independently for each language.

In Publication 2, a comprehensive set of parameterizations for sentence-
aligned bilingual corpora is compared using the proposed evaluation method.
For example, given a bag-of-words representation of sentences for the bilin-
gual corpora, different dimensionality reduction methods, weighting and
normalizing schemes have been compared. The experiments used bilingual
corpora for different language pairs. In order to demonstrate the effec-
tiveness of the proposed evaluation approach, the results were validated in
three different settings:

• The results of the evaluation approach are compared against known
facts based on previous studies. For instance, SVD and PCA are often
perform better than other dimensionality reduction methods when the
target dimensionality is relatively low (Deerwester et al., 1990; Bing-
ham and Mannila, 2001). Among different global weighting schemes,
entropy weighting and logarithmic inverse document frequency (idf)
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are often better when SVD is used for dimensionality reduction (Du-
mais, 1991).

• The results of the proposed evaluation method are compared to the
results of an indirect evaluation in two sentence matching tasks. It is
shown that the vector representation which gets higher score based
on the proposed evaluation method also performs better in the task of
matching sentences between two languages. The two sentence match-
ing tasks are also used as an indirect evaluation for each other. The
results suggested that indirect evaluation based on two very similar
tasks could not perform better than the direct evaluation method
proposed in this thesis.

• The results of the evaluation approach are also validated by manually
finding word translations using canonical factor loadings for different
vector representations. It is shown in Publication 2 that in almost all
of the cases, the higher the evaluation score, the better the translation
accuracy.

CCA-based evaluation setup

In this section, the evaluation setup to compare different vector representa-
tions using CCA is explained. In order to avoid overlearning, the evaluation
measure is computed using a test set. Figure 3.6 shows the flowchart of the
evaluation setup.

The data is divided into three parts in the evaluation setup. The data
sets S0 and T0 are the training data set for the monolingual feature extrac-
tion methods Fs and Ft, which are then applied to the rest of the data sets.
The data sets S0 and T0 represents the collection of N aligned sentences
in two languages, and are transformed into matrices of real vectors using
Fs and Ft as follows:

X0 := Fs(S0) ∈ R
Dx×N (3.28)

Y0 := Ft(T0) ∈ R
Dy×N , (3.29)

where Dx and Dy are the dimensionalities of the vector representations.

The CCA is applied to the development data set (S,T) is also sentence-
aligned. The trained feature extraction from S0 and T0 are used to trans-
form S and T into matrices of real vectors X and Y, respectively.

Finally, (S̃, T̃) represent the test data sets. After applying the feature
extractions, the samples are projected into the common space using the
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Figure 3.6: Diagram of the evaluation setup.

learned projection matrices A and B. Assuming zero-mean data, the test
correlations ρ̃ = [ρ̃1, . . . , ρ̃D] are calculated as follows:

ρ̃ = diag

(
AT X̃Ỹ TB√

AT X̃X̃TA
√
BT Ỹ Ỹ TB

)
. (3.30)

We define the evaluation measure as the sum of correlations obtained
from the test data,

R(X̃, Ỹ ) =
∑

i

ρ̃i. (3.31)

For completely correlated sets R equals to D, and for uncorrelated sets,
R = 0. Note that the held-out set correlations ρ̃i can also have negative
values.

The evaluation setup requires a bilingual corpora of paired samples,
such as sentences or documents. The proposed evaluation is based on CCA
and finds linear dependency between the parallel documents, hence simple
and fast to compute. However, linear dependency may not be able to
capture the true dependency. The evaluation setup may be improved by
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replacing linear dependency with non-linear dependency. A direct solution
is to use kernel CCA instead of classical CCA in the evaluation setup but
the additional kernel parameters will make the setup more complicated.

3.6 Discussion

In this chapter, novel methods for unsupervised multi-view learning are
studied and developed. In an unsupervised setting, defining the agreement
between views is challenging due to not having a clear hypothesis. In this
thesis, statistical dependency is used to define the agreement between the
views. Assuming that the shared information between the views is more
interesting than the information specific to any of the views, statistical
dependency can find the shared information between the views. Based on
this principle, two methods are proposed in this chapter.

The problem of combining data sources has attracted the attention of
researchers in many application domains. In this chapter, an unsupervised
data fusion method for finding shared information between several data
sources is proposed. The method is simple, fast and easily interpretable,
and uses CCA in a new way for dimensionality reduction.

The second method is a simple and direct evaluation criterion based
on the statistical dependency to compare several vector space models for
the sentence-aligned bilingual corpora. CCA is used to find the shared
information between the documents of the two languages. The novelty of
this approach is to use the shared information as a measure to quantify the
goodness of a vector space model.
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Chapter 4

Matching problem in multiple
views

In this chapter, a novel problem of matching the samples between two views
is introduced. The multi-view learning methods and research problems dis-
cussed in Chapter 3 assume that the two views represent different aspects
of the same set of samples, that is, the correspondence of samples between
two views is known. Examples include the following: aligned corpora at
a sentence or paragraph-level are usually needed for statistical machine
translation; images must be paired with their captions in multimodal re-
trieval; and the correspondence of metabolites should be known in order
to compare metabolic profiles of two species. Such strict correspondence
is, however, not always known. For example, there are plenty of unaligned
parallel or comparable multi-lingual documents available in various public
databases or internet, and aligning such documents automatically would
provide a valuable learning resource to many multi-lingual tasks such as
machine translation. Another example is the matching of metabolites be-
tween two species. Metabolic profiling is a non-trivial task, and due to
measurement errors, it is difficult to find the correspondence of metabolites
between two species. The metabolic identities may not even be known be-
tween the two species but the functions can be similar. In order to apply
traditional multi-view learning methods in such cases, it is necessary to
infer the correspondence of samples between the two views. In this the-
sis, a novel data-driven approach to infer the matching of samples between
different views by modeling the mutual dependency is proposed.

A concrete example of learning the matching of samples in two views can
be explained through the research problem considered in the Publication 3.
The aim of the research was to identify chromosomal regions and novel
target genes involved in the tumorogenesis by combining data from two

47
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microarray platforms, Agilent and Affymetrix. The correspondence of the
samples between the two data types was not known in advance. Thus, in
order to jointly analyze the two data types, it was important to infer the
matching of samples between the two platforms.

Ewing sarcoma family of tumors (ESFT) is one of the most common
tumors of bone in children and young adults. The progression of tumor
manifests genetic alterations at chromosomal level, and identification of
these chromosomal targets and markers help the diagnosis and manage-
ment of patients. Rapid development of microarray technologies makes it
possible to measure genomic data at different levels, for instance at DNA
and RNA level; and hence leads to more sophisticated analyses. In Pub-
lication 3, array comparative genomic hybridization (CGH) data from the
Agilent platform and gene expression data from the Affymetrix platform
are combined to pinpoint novel candidates genes in ESFT.

High-resolution array CGH contains the probes corresponding to the
genomic DNA which is utilized to identify novel genetic alterations such
as copy number changes of the genes. In gene expression arrays, probes
are designed corresponding to the messenger RNA (mRNA) to detect the
changes in expression level of the genes. However, integrating the two
platforms allows us to identify the impact of genomic changes in terms of
the expression level of the genes. Since the probes are designed differently
in the two platforms, it is important to identify the corresponding probes
between the two platforms in order to perform the joint analyses.

In Publication 3, sequences of the probes were matched to the genome
to get the chromosomal location and then each Agilent probe was matched
to the nearest Affymetrix probe based on the chromosomal location. This
is usually a standard practice of the matching in biological studies.

Such matching approaches, however, cannot match all of the probes due
to lack of information. For instance, a probe sequence may not match to any
location in the reference genome (Mecham et al., 2004b), it is not possible to
match such probes based on sequence information. Also, many probes may
have overlapping chromosomal locations which makes the matching more
difficult. One of the solutions to overcome such issues is to use measurement
values of the probes for matching. It is assumed that the probes can be
matched based on the similarity of their measurement values. The genomic
measurements in Publication 3 were taken for the same set of 16 patients
for both platforms. Hence, measurement value of a probe in each platform
is vector-valued with the same set of features. In this case when the probes
have comparable measurement values, any standard measure of similarity
can be used for matching. For example, given a Agilent probe, find the
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nearest Affymetrix probe based on the Euclidean distance.

In practice, we may not always have the same set of features in both
views. For example, if the probes in two platforms use different set of
patients to measure genomic activity, the features in two data types will
not be comparable. It is not straightforward to define a similarity measure
between two probes that are represented by a different sets of features. Mo-
tivated by the problem, a novel data-driven matching algorithm to match
the samples between two views is proposed in this thesis. The matching
algorithm use the associated data values to match the samples in two views.
Any prior information can also be incorporated to the matching algorithm
to get more reliable matching of samples. For example, probe-sequence and
chromosomal locations can be used as prior information to match probes
between two microarray platforms. The multi-view matching algorithm
is demonstrated in similar biological experiments, and is discussed in the
Section 4.4.1.

In the Section 4.1, the matching problem is discussed in general. Sec-
tion 4.2 then discusses the assignment problem and a few state-of-the-art
solutions. In Section 4.3, the concept of the matching problem in multi-view
learning is defined and mathematically formulated. Section 4.4 describes
the solution to the matching problem using statistical dependency, both
linear dependency and non-linear dependency. In Section 4.6, few related
approaches for matching in multiple views are discussed. Finally, the ex-
tension of the matching problem to a more general and realistic scenario is
introduced. Section 4.7 describes the generalized matching problem where
each view is represented by multiple realizations, and the matching of sam-
ples can be computed using any pair of realizations, one realization from
each view.

4.1 The matching problem

This section starts with a brief introduction to standard matching problems,
in particular matching in bipartite graphs. It then describes the assignment
problem, which is a weighted bipartite matching problem, and one of the
famous solutions to the assignment problem, called the Hungarian algo-
rithm. In the following section, it is shown that the problem of matching
in multiple views is an instance of the assignment problem. Matching in
multiple views, however, can not be directly solved using the Hungarian
algorithm, which requires a cost of assignment for matching. Defining the
cost of assignment for objects in two different views is a non-trivial task.

The problem of matching is a well-known concept in graph theory.
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X Y

Figure 4.1: Example of a bipartite graph matching. The lines between the
nodes represent the set of edges E, and the solid lines represent an instance
of the maximum cardinality matching M .

Given a graph G = (V,E), where V is the set of vertices and E is set
of edges; a matching M is a subset of edges E, M ⊆ E, such that no
two edges share a common vertex. Let |M | denote the cardinality of the
matching. In many applications, the matching problem can be defined
on a bipartite graph. A graph is bipartite if its set of vertices V can be
divided into two sets X and Y such that every edge in E has one end
point in X and other end point in Y . A bipartite graph is represented as
G = (X ∪ Y,E) (or simply G = (X,Y )). The bipartite matching problem
is to find a matching of maximal cardinality, and is known as maximum
cardinality bipartite matching. Figure 4.1 shows a bipartite graph where
the lines between the nodes of X and Y represent the set of edges E and
the solid lines represent an instance of the maximum cardinality match-
ing M . Several algorithms for bipartite matching run in O(

√
nm) time,

and Hopcroft and Karp (1973) first proposed an algorithm to achieve this
bound. Here, n denotes the number of nodes and m denotes the number of
edges.

A weighted bipartite graph is a bipartite graph in which each edge has
an associated weight. Let c : E 7→ R be such a weight function. In the
weighted bipartite matching problem, the task is to find a matching M of
maximal cardinality with the maximum (or minimum) weight. The weight
of matching M is defined as the sum of weights of edges in M . An exam-
ple of the maximum weight bipartite matching problem is an assignment
problem, which is formally defined in the Section 4.2.
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4.2 Assignment problem – Hungarian algorithm

The assignment problem is a combinatorial optimization problem that con-
sists of finding a matching in a weighted bipartite graph. As an example,
suppose there are a number of agents and an equal number of tasks. Each
agent can perform any task with an associated cost. The assignment prob-
lem consists of assigning each agent a task such that the sum of the costs of
assignment is minimized. It is also called Linear sum assignment problem
(LSAP) due to the linear cost function. There is also a quadratic assign-
ment problem with a quadratic cost function, but in this work only linear
assignment problem is considered.

Let G = (X ∪ Y,E) be a weighted bipartite graph with node sets X =
{x1, . . . , xn} and Y = {y1, . . . , yn}, edge set E = {[xi, yj ], i, j ∈ 1, . . . , n}
and the associated cost c : E 7→ R, c(xi, yj) < ∞. The assignment problem
(LSAP) is then to find a perfect matching on G in terms of a mapping
f : X 7→ Y such that

∑

x∈X

c(x, f(x)) (4.1)

is minimized. The LSAP can easily be transformed into an equivalent
maximization problem by using a simple transformation c(xi, yj) = c0 −
c(xi, yj), where c0 = maxi,j c(xi, yj).

The LSAP can also be formulated as a primal linear programming prob-
lem:

maximize
n∑

i=1

n∑

j=1

cijzij (4.2)

subject to
n∑

i=1

zij = 1, ∀j = 0, . . . , n, (4.3)

n∑

j=1

zij = 1, ∀i = 0, . . . , n,

zij = {0, 1}, ∀i, j = 0, . . . , n.

The solution matrix [zij ] is called the primal solution, where zij = 1 if and
only if the edge {xi, yj} is in the matching M . Here, cij represents the cost
c(xi, yj).

The dual problem corresponding to the primal LSAP in Equation 4.2
can be obtained by associating dual variables ui and vj to the equality
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constraints in Equation 4.2

minimize

n∑

i=1

ui +

n∑

j=1

vj (4.4)

subject toui + vj ≥ cij , ∀i, j = 0, . . . , n.

Many algorithms have been proposed to solve the assignment problem
based on either the primal or the dual version, or using both in the primal-
dual version. The first algorithm developed specifically for solving the as-
signment problem was the Hungarian method by (Kuhn, 1955) based on the
primal-dual method of the linear programming. The original solution had
an O(n4) run-time, but later implementations reduced it to O(n3). Kennedy
(1995); Dell’amico and Toth (2000) give a nice overview of the bipartite
matching and the state-of-the-art algorithms for the assignment problem,
respectively. Burkard et al. (2009) give a recent comprehensive treatment
to the assignment problem.

The assignment problem can be extended to the case where the node
sets X and Y do not have the same number of nodes. It is called the
generalized assignment problem (GAP) and the optimization problem can
be formulated the same way as in Eq. 4.1. The GAP can also be solved
using the Hungarian algorithm. The only difference to the AP is that some
nodes will remain unused in the node set that has more nodes. In this
work, we used the R (R Development Core Team, 2009) implementation of
Hungarian method by (Hornik, 2005) which requires O(n3) run-time and
can also solve the generalized assignment problem.

4.3 Matching between two different views

This section considers the problem of matching the samples between two
data sets, where samples in each data set have different feature representa-
tions. The task is to match the samples using associated data values. Here,
the multi-view matching problem is formally described, and formulated as
an assignment problem. It is also explained how multi-view matching is
different from standard matching problems and why standard solutions to
the assignment problems cannot be directly applied. In Section 4.4, a novel
algorithm to solve the multi-view matching problem is introduced.

Consider a simple case, X ∈ R
N×D and Y ∈ R

M×D,M ≥ N , are
two data matrices with the same sets of feature representations, that is,
the samples of both data matrices lie in the same data space. Here, each
row represents a sample and each column represents a feature. Assuming
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one-to-one matching of samples, the matching problem consists of finding a
permutation p of samples in Y such that the i(th) sample xi ∈ X is matched
with the sample ypi ∈ Y . The matching of samples between X and Y can
be formulated as

argmin
p

N∑

i=1

C(xi,ypi), (4.5)

where C(xi,yj) is the cost of matching xi with yj . This is equivalent to
the formulation of the assignment problem in Eq. 4.1. The idea here is to
define the cost of matching or assignment using vectorial representations of
samples. Since the observations xi and yj lie in the same data space, the
distance, d(xi,yj), between them can be assumed to be the measure of the
likelihood of yj matching the xi; the smaller the distance, the more likely
the two samples match to each other. The problem of matching samples
between the two data matrices can be written as

argmin
p

N∑

i=1

d(xi,ypi), (4.6)

which is the assignment problem when using distance between samples,
d(xi,yj), as the cost of assignment. Instead of using the distance between
samples, it is possible to use other measures of similarity, for instance, the
correlation between samples as the cost of assignment. In case of correla-
tion, xi is matched with the sample yj that is maximally correlated, and
the Eq. 4.6 becomes the maximization problem. The matching problem can
be easily solved with the Hungarian method when the two views are as-
sumed to be the same, for instance, when repeated measurements are with
the same sensor. In this thesis, however, the matching problem, when X
and Y consist of different sets of features representing two different views,
is considered.

The task in multi-view learning, by definition, is to learn from multi-
ple views where each view represents a different aspect. In this case, the
samples in the two views X and Y will not have comparable feature rep-
resentations. It is not trivial to define the cost of assignment when the
samples in each view are represented by a different sets of feature represen-
tation. Even if the samples in both views have a vectorial representation
of the same dimensionality, the features may not be directly comparable,
and it is not possible to use similarity measures like Euclidean distance
or correlation to define the cost. Hence, the matching solution described
above cannot be used.
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4.4 Matching between two views by maximizing
dependencies

In this section, a novel approach to solving the matching problem in a multi-
view setting is proposed. The approach uses the statistical dependency
between the two views to infer the matching of samples. Section 4.4.1
proposes an iterative algorithm that uses CCA to model linear dependency
between the views to solve the matching problem. A non-linear version
of the matching algorithm is also proposed in the Section 4.4.2. Finally,
Section 4.6, discusses the related matching algorithms.

Let X ∈ R
N×Dx and Y ∈ R

M×Dy ,M ≥ N , be two data matrices
representing two different views with different sets of features. We assume
that each sample in X is matched with exactly one sample in Y. Here,
each row in X and Y represents a sample. The matching task is to infer a
permutation p of samples in Y such that each xi ∈ X is matched with the
sample ypi ∈ Y.

In Publication 4, a new approach to finding the matching of samples be-
tween two views based on the statistical dependency is introduced. Given a
random permutation p, the views will necessarily be statistically indepen-
dent, that is, p(X,Y(p)) = p(X)p(Y(p)), where Y(p) ∈ R

N×Dy represents
a matrix obtained by picking rows indicated by p. Hence, maximizing the
dependency between the views should be a good solution to infer the permu-
tation p that correctly matches the samples. It is proposed that maximizing
the dependency, measured as the mutual information

I(X,Y(p)) =

∫
p(x,ypi) log

p(x,ypi)

p(x)p(ypi)
dxdy, (4.7)

with respect to the permutation p finds a good matching. In practice,
mutual information is difficult to compute and hence cannot be directly
used as the cost function.

However, a lower bound to mutual information can be computed us-
ing any transformations f and g, that is, I(f(X),g(Y(p))) ≤ I(X,Y(p)).
Hence, instead of the complete mutual information the lower bound can be
maximized to search for dependency. The matching problem can then be
formulated as

max
p,f ,g

I(f(X),g(Y(p))) ≤ max
p

I(X,Y(p)), (4.8)

which is maximized over f and g to make the bound as tight as possible.
A two-step iterative algorithm to solve the optimization problem in

Eq. 4.8 is proposed. The first step assumes a fixed permutation p and
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learns the projections f and g, and in the second step the permutation p
is updated given the projections learnt in the first step. Note that both
steps maximize the dependency between views by optimizing the same cost
function in Eq. 4.8. Section 4.4.1 describes the matching algorithm based
on linear projections, and section 4.4.2 extends the matching algorithm to
non-linear dependencies using the kernel approach.

4.4.1 Maximizing linear dependencies

In this section, a two-step iterative algorithm that uses linear projections to
solve the matching problem in Equation 4.8 is described. The (canonical)
correlation is used as a measure of dependency. It has a direct relation to
mutual information, given Gaussian data, as explained in Section 3.3.5. For
other distributions the relationship is only approximative. Thus, finding
linear projections that maximize (canonical) correlation will also maximize
the mutual information. Although correlation is not able to detect higher
order dependencies, it is faster to compute.

Let f(x) = xwT
x , where x,wx ∈ R

1×Dx and g(y) = ywT
y , where

y,wy ∈ R
1×Dy are the linear projections. Using correlation as a measure

of dependency the optimization problem in Eq. 4.8 becomes

max
p,wx,wy

corr(XwT
x ,Y(p)wT

y ). (4.9)

Equation 4.9 can be solved using a two-step iterative approach: assuming
fixed p, the projection vectors wx and wy are computed, and then the
permutation p is updated, given fixed projection vectors.

Assuming fixed projection vectors, the optimization problem can be
formulated as an assignment problem. Using the sample estimate of corre-
lation for the cost in Eq. 4.9, we get

max
p

wxX
TY(p)wT

y

‖XwT
x ‖‖Y(p)wT

y ‖
, (4.10)

where the numerator can be expressed as

1

2
(|XwT

x ‖2 + ‖Y(p)wT
y ‖2 − ‖XwT

x −Y(p)wT
y ‖2). (4.11)

Assuming one-to-one matching and N = M , the first two terms in Eq. 4.11
and the denominator in Eq. 4.10 are constant with respect to p, since the
order of samples does not affect the norm. Ignoring the constant terms,
the optimization problem for p can be written as

min
p

‖XwT
x −Y(p)wT

y ‖2 = min
p

N∑

i=1

‖xiw
T
x − ypiw

T
y ‖2, (4.12)
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which is an assignment problem where the cost of assignment is the Eu-
clidean distance between the samples in the projected space. The first step
of the iterative algorithm can thus be solved using the Hungarian method
to infer the permutation p. Note that Eq. 4.12 is equivalent to Eq. 4.10 only
when N = M . When N < M , the term ‖Y(p)wT

y ‖2 is not constant, since
some of the samples of Y will be ignored. In order to avoid this potential
bias, the distance between samples is normalized as shown in Algorithm 1;
for details see Publication 6.

Assuming fixed permutation p, the task in the second step of itera-
tive algorithm is to compute linear projections wx and wy to optimize the
same cost function as in Eq. 4.9. This is equivalent to solving CCA for
X and Y(p) to get the pair of projection vectors wx and wy such that
corr(XwT

x ,Y(p)wT
y ) is maximized. CCA, however, returns projection ma-

trices Wx ∈ R
D×Dx and Wy ∈ R

D×Dy , where D = min(Dx, Dy), consist-

ing of consecutive pairs of projection vectors such that corr(Xw
(i)T
x ,Xw

(j)T
x ) =

0, ∀j 6= i. These additional components can naturally be used while solving
the matching by extending the distance measure in Eq. 4.12 to multidimen-
sional projections.

Each pair of CCA components, (wi
x,w

i
y), is associated with the cor-

responding canonical correlation, ρi, which signifies the contribution of
the particular pair. Since correlation is scale-invariant, each component
can be re-scaled for maximum informativeness. For normal distributions,
mutual information decomposes additively over components as I(X,Y) =
−1

2

∑
i(1−ρ2i ). Taking the same analogy, each component is, slightly heuris-

tically, re-scaled with corresponding canonical correlation while computing
the distance, giving

min
p

i=N∑

i=1

j=D∑

j=1

ρ2j‖xiw
(j)T
x − ypiw

(j)T
y ‖2 (4.13)

as the final cost function to compute the matching. Here, w
(j)
x and w

(j)
y

represent the jth rows of corresponding projection matrices, and ρj is the
the associated canonical correlation.

In practice, the matching algorithm starts with a random permutation
p and computes the linear projections based on it. Both the steps are
then repeated until convergence. The algorithm depends on the initial-
ization, and converges to a locally optimal solution. The initialization of
permutation p is thus an important step. Section 4.4.3 describes how prior
information about the matching can be incorporated in the permutation
p to get a better initialization, and hence better convergence of the algo-
rithm. The concept of candidate sets based on the prior information about
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Input: Matrices X ∈ R
N×Dx and Y ∈ R

M×Dy . Candidate sets Si

for each row xi of X, consisting of sets of indices for the
samples in Y. Each element in Si is an index from 1 to M .

Output: A match between the objects in X and Y, given as a
vector p ∈ [1..M ]N . All the elements in p must be unique
and pi ∈ Si ∀i.

Initialization: Choose random p that satisfies the candidate sets.1

repeat2

Find the projection matrices Wx and Wy and the canonical3

correlations {ρj}Dj=1, where D = min(Dx, Dy), by maximizing the
correlation between X and Y(p).
Compute pair-wise distances d(i, k) between samples in X and4

samples in Y where k ∈ Si, d(i, k) =

{∑D
j=1 ρ

2
j‖xiw

(j)T
x − ykw

(j)T
y ‖2}/{∑D

j=1 ρj‖xiw
(j)T
x ‖‖ykw

(j)T
y ‖}.

Set d(i, k) = ∞ for all pairs (i, k) for which k /∈ Si.5

Find the match in the subspace defined by Wx and Wy by6

optimizing minp

∑N
i=1 d(i, pi), taking into account the constraint

of unique values for the elements of p.
until p, Wx, and Wy do not change ;7

Algorithm 1: Summary of the matching algorithm.

matching is defined in Section 4.4.3. The two iterative steps of the match-
ing algorithm along with implementation of candidate sets are summarized
in Algorithm 1.

Matching probes between different microarray platforms

The matching algorithm based on CCA is demonstrated by matching the
probes between two microarray platforms in Publication 4. Different mi-
croarray technologies use different sets of probes to measure the genomic
activities, for example, measuring expression levels of the same set of genes.
Integrating information from different microarray platforms can improve
the task of gene expression analysis in following ways: first, identical ob-
servations in more than one platform are supposed to be more robust when
validated by biology and second, jointly analyzing data sets from multiple
sources may produce more reliable and significant results. However, com-
bining data from different platforms requires the correspondence of probes.

Standard practices of matching probes between two microarray plat-
forms are usually gene identifier-based matching or sequence-based match-
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ing (Mecham et al., 2004a). Such methods, however, ignore the measure-
ment values of the probes in matching. In this thesis, it is shown how
the measurement values of probes can also be used to find the matching
while gene identifier and sequence information can be used as prior infor-
mation. Using measurement values to matching is advantageous in cases
where the probe sequence may not match to any location in the reference
genome (Mecham et al., 2004b), hence gene identifier or the chromosomal
location for the probe cannot be found.

As a demonstration, the matching algorithm is applied to match the
probes between two different versions of the Affymetrix oligonucleotide ar-
rays, HG-U95 and HG-U133, in Publication 4. The gene expression profiles
of pediatric acute lymphoblastic leukemia (ALL) patients from (Yeoh et al.,
2002; Ross et al., 2003) are used as measurement data on both HG-U95 and
HG-U133 platforms for the same set of 133 patients. This setup provides
an excellent test-bed for the algorithm for two reasons: first, the ground
truth is known, and second, it is possible to compare the proposed matching
algorithm against the alternative approach of directly using the assignment
problem in the original space since both the data sets have paired features,
that is the same sets of 133 patients.

The CCA-based matching is able to correctly match 72.6% of the probes
between the two platforms, and clearly outperforms the comparison ap-
proach that uses the assignment problem in the original space. Both the
correlation and Euclidean distance are used as the cost of assignment for
the comparison. It is also empirically shown that weighting CCA compo-
nents with corresponding canonical correlations, as in Eq. 4.13, performs
better than any lower-dimensional subspace. The details of the experimen-
tal setup and the results can be found in Publication 4.

4.4.2 Maximizing non-linear dependencies

The matching algorithm described in Section 4.4.1 is easy to understand
and implement, but it makes the strong assumption of linear dependency
which might affect its performance when linear dependencies are not suf-
ficient to capture the relationship between the two views. Often the rela-
tionships between the views are non-linear, and the matching can be better
inferred using the non-linear functions f and g instead of their linear coun-
terparts. In other words, the bound in Eq. 4.8 can be made tighter by
relaxing the linearity assumption. The matching algorithm is modular in
nature, and it can be easily extended to incorporate non-linear dependen-
cies. In this section, the matching algorithm based on maximizing non-
linear dependencies is described.
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Kernel methods provide a good approach to detect non-linear patterns
in data. The main idea behind kernel methods is to map the features of
data into a new feature space such that non-linear patterns can be repre-
sented in linear form, and then any state-of-the-art method to detect linear
patterns can be applied in the new feature space. This is called the kernel
trick. A detailed overview of kernel methods can be found in (Shawe-Taylor
and Cristianini, 2004). Using the kernel trick, the matching algorithm is
extended as follows: the features of two data matrices X and Y are mapped
into a kernel space, and then linear projection vectors and the matching
are learned in the kernel space.

As described in Section 3.3.3, let Kx and Ky be the Gram matrices
for the data matrices X and Y, respectively. The kernelized matching
algorithm works directly with the Gram matrices instead of the original
data sets, and it otherwise remains the same as in Algorithm 1.

Assuming fixed permutation p, the Gram matrices Kx and Ky(p) are
used to compute projection vectors in the kernel space. Here, Ky(p) is
the Gram matrix corresponding to Y(p). As shown in (Bach and Jordan,
2002), this is equivalent to performing KCCA on the original data sets X
and Y(p) giving the projection vectors in terms of expansion coefficients
αx,αy ∈ R

N×1. Analogously to the projection matrices Wx and Wy in
classical CCA, KCCA returns the projection matrices in terms of expansion
coefficients: Ax = [α1

x, . . . ,α
q
x] and Ay = [α1

y, . . . ,α
q
y], where q is the

minimum of the ranks of Kx and Ky.

In the second step of the algorithm, given the KCCA projection matri-
ces, the matching can again be solved using the Hungarian method with
the distances computed in the kernel space as the cost of assignment. The
optimization problem to compute the matching can be written as

min
p

N∑

i=1

‖ki
xAX − ki

yAy‖2, (4.14)

where the ki
x and ki

y represent the i(th) row of the kernel Gram matrices.
The Eq. 4.14 is similar to the optimization problem in the case of matching
with classical CCA. Further, each KCCA projection dimension can be re-
scaled with the corresponding kernel canonical correlation giving

min
p

N∑

i=1

1=q∑

j=1

ρ2j‖ki
xα

j
x − ki

yα
j
y‖2 (4.15)

as the final cost function to compute the matching in the kernel space.
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The kernel matching algorithm makes it possible to detect nonlinear de-
pendencies between the two views. However, it introduces some drawbacks
in terms of learning more parameters. The first drawback is the regular-
ization parameter for KCCA; as discussed in Section 3.3.3, plain KCCA
overlearns badly due to high dimensionality of data and results in a poor
generalization. A proper regularization is needed to avoid trivial learning.
Another set of potential parameters is associated with the kernel functions
used to compute kernel matrices. For example, in the case of using Gaus-
sian kernel function to compute kernel matrices, selecting an appropriate
Gaussian width is important. The regularization parameter and other po-
tential parameters associated with the kernel function can be learnt using
a validation set.

4.4.3 Incorporating prior information

The proposed two-step iterative algorithm to the matching problem is com-
pletely unsupervised in nature1. It is, however, also possible to incorporate
any prior information about the matches into the method. For instance,
in the problem of matching probes between two microarray platforms, we
used chromosomal location of probes to rule out highly unlikely matches:
if the two probes represent the same gene, their chromosomal locations
should not be far away. Another example is the task of aligning the bilin-
gual documents by matching their sentences. In this case, if the partial
alignment at the document-level or paragraph-level is known, the matching
of sentences can be restricted within the same paragraph or document in
the corresponding languages.

Such prior information about the matching can be incorporated in the
algorithm as additional constraints on the permutation matrix. The con-
cept of candidate sets is defined in order to exclude certain matches from
the set of possible solutions. For each sample x ∈ X, a subset of samples
in Y is defined as candidates. The matching algorithm is allowed to find
a match within the candidate set only, by giving an infinite cost to the
samples outside the candidate set. This also makes the algorithm faster by
avoiding the need of computing all possible distances. The use of candidate
sets can make the algorithm even faster if a good implementation of sparse
assignment problem such as Jonker and Volgenant (1987); Duff and Koster
(2001) is used, instead of just giving infinitely high cost to the samples
outside the candidate sets.

1Although for the KCCA case, a supervised setting is needed to choose kernel param-

eters
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Yet another kind of prior information is the known matching for some
of the samples between the two views. This is a realistic scenario in bilin-
gual document alignment where the matching of some of the sentences
could be known, and the task is to infer the matching for the rest. The
known matching can be used to supervise the matching algorithm while
inferring the matching for the remaining samples between two views. In
Publication 5, the semi-supervised matching algorithm incorporating both
the hard constraint of the candidate sets and the soft constraint of known
partial matching is proposed.

The semi-supervised matching also works in an iterative two-step man-
ner similar to its unsupervised counterpart. In the semi-supervised match-
ing, both of the data matrices are complemented with the samples of known
matching. The complemented data matrices are then used to compute the
projections in the first step of the algorithm. However, in the second step,
while inferring the matching of samples given the projections, the part
with known matching is kept fixed. Using the samples with known match-
ing along with unmatched samples helps improve the quality of projections
computed at each iteration. Besides, if the matching is known for a suffi-
cient number of samples, it can be used to initialize the KCCA projections.
Such projections can in turn be used to initialize the matching of samples
instead of using random initial matching. The part with matched samples
can also be used as a validation set to compute the KCCA parameters.

4.5 Sentence matching in parallel bilingual docu-
ments

Several natural language processing systems used for cross-lingual informa-
tion retrieval and statistical machine translation need parallel or compara-
ble bilingual documents as learning resources. Documents in two languages
which are exact translations of each other are called parallel bilingual doc-
uments, while the comparable documents are not strict translations of each
other but convey the same information. Before the bilingual documents
can be used for learning, it is important to get them aligned at some level,
say, at sentence or document-level, depending on the task. As a concrete
application of the matching algorithm, the task of matching sentences in
bilingual parallel documents is considered in Publication 5. The matching
of sentences is done using only monolingual data.

The problem of aligning documents has been widely studied. Earlier
methods were primarily based only on “anchor” cues such as speaker’s iden-
tifiers, paragraph markers and sentence lengths (Gale and Church, 1991;
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Brown et al., 1991). Later, models based on translation lexicons (Wu,
1994), part-of-speech taggers (Papageorgiou et al., 1994), statistical trans-
lation models and more complex models based on co-occurrence (Melamed,
1999) have also been applied. In this thesis, sentence-alignment is addressed
as a matching problem which is based on vectorial representations of the
sentences only. Unlike typical sentence-alignment methods, the match-
ing algorithm does not use information like anchor cues, sentence length,
part-of-speech taggers or translation lexicons. However, it is possible to
incorporate such sources of information, if available, in the form of prior
information as explained in Section 4.4.3.

In Publication 5 the matching algorithm is applied to align the Finnish
and the English text from Europarl corpus consisting of proceedings of
the European Parliament meetings in 11 languages (Koehn, 2005). The
sentences in two languages are represented as vectors, and the matching is
done purely based on the vectorial-representations of the sentences. Parallel
documents in two languages can be seen as two different views of the same
underlying semantics. The vector representation in two languages are, how-
ever, not comparable as such since each language has its own sets of words,
and the representations will capture the frequencies and co-occurrences of
these words. Unless the bilingual lexicons are given, the two views repre-
sented by two languages will have non-comparable sets of features. The
two views are, however, statistically dependent due to the same semantic
content. The proposed matching algorithm is used to infer the matching
of sentences between parallel documents using the monolingual data. In
Publication 5, the non-linear matching algorithm is empirically shown to
outperform the linear matching algorithms. The semisupervised approach
by taking partial alignment into account further improves the matching
accuracy in both the linear and non-linear matching algorithm. The exper-
imental setup and detailed results can be found in Publication 5.

4.6 Related approaches to matching

Recently, a few other studies have also been carried out to learn from
non-commensurable data sources, that is, from data sources representing
different views. While some of methods directly solve the matching of
objects between the two views similarly to the proposed matching approach,
others try to find a common subspace for the two views where the objects
can be compared. The latter kind of approaches can also be used to solve
the bi-partite matching using the costs stemming from the distances in the
common subspace. In this section, the related approaches for finding the
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matching of objects are briefly described. In Publication 6, these related
approaches are compared to the matching algorithm proposed in this thesis.
The summary of the comparison is presented at the end of this section.

4.6.1 Matching with probabilistic CCA

Haghighi et al. (2008) proposed a matching method based on CCA and
demonstrated its use for bilingual lexicon induction from monolingual cor-
pora. The method resembles the matching method proposed in this thesis,
although it was developed independently. The translations are induced us-
ing a generative model based on CCA. Haghighi et al. (2008) proposed an
EM algorithm to solve the model that is analogous to the proposed two-
step iterative method. In the M-step, the CCA parameters are computed
for a given matching, and in the E-step, the matching of objects is updated
given the CCA parameters.

Although the M-step in (Haghighi et al., 2008) is motivated through the
probabilistic formulation of CCA. This is identical to the corresponding step
in Algorithm 1, since the maximum likelihood estimate of the probabilistic
CCA is shown to be equivalent to the solution of classical CCA (Bach
and Jordan, 2005). The main difference between the two methods lies in
the second step of the algorithm. Haghighi et al. (2008) used the marginal
likelihood weights approximating pointwise mutual information as a cost
for the maximum weighted bipartite matching, and pointed out that a
simple proxy of using the distance between objects in the latent space
is more efficient. For the matching approach proposed in this thesis, the
distance between the objects for the cost function in the maximum weighted
bipartite matching is directly derived from the objective function. Hence, a
mathematical basis for using the distance as a cost function in the bipartite
matching is provided.

4.6.2 Kernelized sorting

Quadrianto et al. (2009) proposed another method, kernelized sorting, for
matching of objects using the same philosophy of maximizing the depen-
dency between the views, but used a different criterion as a measure of
dependency, Hilbert-Schmidt Independence Criteria (HSIC). Given the two
sets of objects, X = {x1, . . . ,xm} and Y = {y1, . . . ,ym}, the idea is
to find a permutation matrix π ∈ Πm on m terms such that the pairs
Z(π) = {(xi,yπi

)} for 1 ≤ i ≤ m are maximally dependent. Here,

Πm =
{
π|π ∈ 0, 1m×m and π1m = 1m, πT 1m = 1m

}
, (4.16)
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and 1m ∈ R
m is a vector of all ones. The permutation matrix π in (Quadrianto

et al., 2009) and p in this work are related. The ith element in vector p is
the position of 1 in the the ith row of π. As shown in (Quadrianto et al.,
2009), the non-parametric sorting problem of X and Y can be defined as

π∗ = argmax
π∈Πm

Dep(Z(π)), (4.17)

where Dep(Z(π)) is the dependency between the random variables x and
y. That is, the cost function resembles the formulation in Eq. 4.8, the
only difference being the measure of dependency. It has also been shown
by Quadrianto et al. (2009) that if mutual information is used as a depen-
dency measure instead of HSIC, their matching method is related to the
algorithm of Jebara (2004).

Using HSIC as a dependency measure has the advantage that it does
not require density estimation and requires only the kernel matrices; hence
it should be faster and easier to compute. On the other hand, kernelized
sorting using HSIC does not provide the explicit low-dimensional represen-
tations. One drawback with kernelized sorting is that it is highly sensitive
to the initialization as shown in Publication 6.

4.6.3 Manifold Alignment

Wang and Mahadevan (2009) proposed an approach for manifold alignment
that enables comparing objects from different manifolds. Manifold align-
ment builds a connection between non-commensurable datasets by aligning
their underlying manifolds. The manifold alignment method of Wang and
Mahadevan (2009) learns a low-dimensional mapping for objects in both of
the datasets by matching local geometries between them, and preserving
the neighborhood relationships within each dataset. Hence, the objects in
the two manifolds can be compared by defining a distance in the learned
low-dimensional space.

Given datasets X ∈ R
N×Dx and Y ∈ R

M×Dy , the idea is to represent
each object, xi and yj , using its relationship to the k-nearest neighbors.
This makes the comparison of xi and yj possible. The distance between
xi and yj is based on alignment of the k-nearest neighbors in both of the
data spaces. One drawback in this method is that the comparison of objects
requires going through all possible k! combinations, and therefore only small
neighborhoods can be used. The eigenvectors, α and β, obtained from the
eigenvalue decomposition of the joint manifold are used to compute low-
dimensional projections of X and Y.

The manifold alignment approach does not directly solve the one-to-
one matching problem, but it provides a distance measure for objects in
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the two manifolds, or views. The method can, however, be used to solve
the bi-partite matching by using the distance measure as a cost function,
for instance, in the assignment problem. The method proposed by Wang
and Mahadevan (2009) has the advantage of not being iterative but it is
computationally very heavy, and requires a lot of parameter tuning.

4.6.4 Comparison of the matching algorithms

An empirical comparison of kernelized sorting, manifold alignment and the
proposed matching algorithm is conducted in Publication 6. The task
was to match the metabolites between two collections of humans. The
performances of methods could be compared since the ground truth of
true matching was known. The CCA-based matching algorithm outper-
formed both the kernelized sorting using the two initialization strategies
suggested in (Quadrianto et al., 2009) and the manifold alignment as pro-
posed in (Wang and Mahadevan, 2009) in the task of metabolite matching.
When coupled with the assignment problem, the performance of manifold
alignment was comparable to the CCA-based matching algorithm, though.
It was also pointed out in Publication 6 that manifold alignment was con-
siderably slower than both the kernelized sorting and CCA-based matching
algorithm.

4.7 Generalized matching problem

The matching algorithm proposed in this thesis and the ones proposed
by Haghighi et al. (2008); Quadrianto et al. (2009) learn the matching
from a single observation of samples in the two views. While the task of
matching is a well-defined optimization problem, there are still uncertain-
ties involved. None of the algorithms guarantee global optimality, and the
matching solutions depend on the initialization. A different initialization
may lead to a different matching solution. Also, the solution will probably
change if another set of realizations for both views is used for matching.
Since the matching algorithm is purely data-driven, it may be infeasible to
obtain an accurate and reliable matching solution, given a single realiza-
tion of the views. In Publication 6, a generalized matching algorithm is
proposed for the more realistic scenario where each view is represented by
multiple realizations. The final matching is inferred based on all available
data as a consensus of all possible matching solutions.

To clarify the terminology, the term realization is used to represent
a data matrix. Given a single realization for each of the two views, a
match or matching represents the set of all pairs of samples (xi,ypi) for a
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Figure 4.2: Mapping between the abstract terminology and the applica-
tion of translational metabolomics. The task is to learn a consensus match
between metabolite identities of humans and mice, pairing each human
metabolite with one mouse metabolite. The consensus match is found by
combining individual matches of several realizations of the two species.
Each realization is a data matrix measuring the metabolic activity of a sin-
gle individual, human or mouse. The rows of the data matrices correspond
to the objects being matched, in this case the metabolites. The columns,
in turn, are features that are used for learning the match, and they are the
metabolic concentrations at different time points.

permutation p. A consensus can be learned from a collection of matches
(or matchings) computed from several such realizations. The terminology
and the generalized matching algorithm are explained in Figure 4.2.

A realistic example is the matching of metabolites between two species
in translational metabolomics. The purpose of translational metabolomics
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is to study the differences and the commonalities in metabolic processes
between two populations such as healthy and diabetic (Orešič et al., 2008),
male and female (Nikkilä et al., 2008) or between human and a model or-
ganism such as mouse. This is an important task in order to find which
properties of one population can be generalized to another population, for
instance, generalizing metabolic phenotypes in mice to humans. Metabo-
lites are small molecules that appear as an intermediate or end product of
cellular processes in living organisms and the study of metabolites provides
the best chance to find translational biomarkers, as has been previously
demonstrated in metabolic syndrome (Damian et al., 2007). The compar-
ative metabolome analysis is commonly performed by mass spectrometry.
The identities of metabolites may not be clear due to various technical
reasons of measurement process, and the functions of metabolites may be
different in different tissues or species. In order to compare metabolic
profiles of two species, the correspondence of functionally and structurally
related metabolites should be known between the species.

In this thesis, a computationally feasible solution to combine the indi-
vidual matching solutions for sufficiently many realizations of both views is
proposed. The approach to compute the consensus match does not hold any
assumptions about how the individual matching solution is computed. The
consensus matching approach can thus be applied on top of any matching
algorithm.

Consensus match

In this thesis, a novel concept of finding the matching of objects in the more
realistic situation where both views are represented by multiple realizations
is introduced. The task is not just to find the matching of objects given
any two realizations of the two views but rather to find the underlying
global match between the two views. The individual matches based on
single realization of the two views are assumed to represent the instances
of the underlying global match of the two views. A computationally feasible
solution to compute a global match between the two views based on the
consensus of the individual matching solutions is described here.

Let X̄ = {Xs}, s ∈ {1 : S} and Ȳ = {Yt}, t ∈ {1 : T} be the T and
S realizations of the two views, where each Xs ∈ R

N×Dxs , Yt ∈ R
M×Dxt ,

and M ≥ N . The number of features in each realization can be different.
The individual matching solution between any two realizations Xs and Yt

can be computed using Algorithm 1. The idea is to find matches between
sufficiently many realizations and then to find a consensus among them to
learn a global permutation P.
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The proposed approach to learning the global match makes two sim-
plifying assumptions: first, all pairs of realizations are assumed to be in-
dependent samples, which holds approximately assuming the total number
of realizations is large, and second, while combining the matchings to com-
pute the consensus, the information provided by the individual matching is
sufficient to compute the global match. That is, the original observations
are no longer needed.

In order to elaborate on the second assumption, let pk, k ∈ {1 : (S ×
T )} be a match between the samples of Xs and Yt which is computed
using Algorithm 1. The individual solutions pk are combined through a
contingency table C ∈ N

N×M . The cell C(i, j) of the contingency table is
the count of matchings where the ith sample of Xs is matched with the
jth sample of Yt. Intuitively, if two objects are matched with each other
in many individual matchings pk, the corresponding cell value will have
a high count. According to the second assumption, only the information
provided by the contingency table is used to compute the consensus match.

The N rows of the contingency table C represent the N samples of Xs,
and the M columns of C represent the samples of Yt. The problem of finding
the consensus match through the contingency table C can be formulated
as finding a maximum-weight bipartite matching for the rows and columns
of C. The cost (weight) of assignment is defined based on the value of
C(i, j), where i ∈ {1 : N}, j ∈ {1 : M} and

∑M
j=1C(i, j) = (S × T ), ∀i.

Let P denote the consensus matching based on the contingency table. The
consensus matching can be computed by solving the following optimization
problem

max
P

N∑

i=1

C(i,P(i)). (4.18)

Interestingly, this is of the same form as Eq. 4.1, and hence can be solved
by the Hungarian method.

In addition, an approach to characterize the potential alternative matches
for each sample is also proposed. Note that the matching approach as-
sumes the one-to-one matching of samples. However, in some applications
we might be interested in one-to-many matching solutions. In order to find
potential deviations from the one-to-one match and to find an alternative
solution, the following approach is proposed: The contingency table C is
re-arranged such that the pairs in the consensus match appear on the di-
agonal in the decreasing order of the count. Let D denote the re-arranged
table. The approach is motivated by a crude measure of reliability of any
given matched pair. It is assumed that the pairs occurring in the beginning
of the diagonal are more likely to be the correct than those at the end of
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the diagonal of D.
In order to characterize the potential alternative pairs of each object,

a simple approach based on randomization is proposed. The count C(r, i)
is used as a test statistic for all i ∈ [1,M ], and the p-values for each pair
of objects are estimated as the proportion where Z(r, i) > C(r, i). The
null distribution Z(r, i) is generated by drawing 1000 random matches that
satisfy the candidate sets, and counting in how many of the random matches
each of the potential pairs occur. Thus, the null distribution is constructed
in the same way as the matching algorithm is being initialized. For a given
object xi, all those yj , j ∈ [1, N ] are deemed potential alternate matches for
which the pair (xi,yj) has a low p-value, with any user-defined threshold.

4.8 Discussion

Multi-view learning methods have recently gained popularity in the ma-
chine learning community, and have been applied in many application do-
mains, for example, bioinformatics, natural language processing and in-
formation retrieval. In a standard setting, multi-view learning methods
assume that the correspondence of samples between the views is known.
Such correspondence of samples is, however, not known in many cases. In
this chapter, a generalized concept of multi-view learning methods is pro-
posed when the correspondence of samples between the views is not known
or only partially known.

The concept of a matching problem in multiple views is introduced in
this chapter. A novel contribution of this thesis is the matching algorithm to
find the correspondence of samples between two views. Given the solution
of the matching algorithm, any standard multi-view learning method can
be applied. The matching algorithm is demonstrated on three different
applications. The chapter also described a few related methods to the
proposed matching algorithm. The matching algorithm proposed in this
thesis is empirically shown to perform better than the related methods in
a metabolomics application.
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Chapter 5

Summary and conclusions

In this thesis, I have considered the problem of learning from multiple
views where each view represents a different aspect of the the same con-
cept or phenomenon. The underlying assumption in multi-view learning
is that learning by searching for agreement between views may improve
the generalization ability. One of the important questions is how to define
an agreement between views. In this work, multi-view learning methods
that use statistical dependencies to find the agreement between views in
an unsupervised setting have been studied and developed. Statistical de-
pendency between views reflects what is shared or mutually informative
between them, and hence provides an intuitive definition for the agreement.
The methods discussed in this thesis can be easily extended to supervised
or semi-supervised learning problems.

Based on the principle of using statistical dependencies between the
views for multi-view learning, an unsupervised data fusion approach is pro-
posed. The data fusion approach combines multiple data sources with
co-occurring samples such that the shared information between them is
preserved. It is shown how CCA can be used as a pre-processing tool for
the data fusion. A randomization-based approach to determine the optimal
dimensionality of the combined representation is also proposed.

Another novel contribution based on the statistical dependency between
views is an evaluation criterion to compare several vector representations for
sentence-aligned bilingual corpora. Choosing an appropriate vector space
model is crucial to many language technology applications, for instance,
machine translation and cross-language information retrieval. The indirect
evaluation is typically done in the application setting which is time con-
suming and also restricted to given application. In this thesis, we propose a
direct measure based on CCA to evaluate vector space models for bilingual
corpora.

71
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As a main contribution of this thesis, a novel concept of multi-view
learning in a non-standard setting is introduced. The novel concept general-
izes the multi-view learning methods to a situation where the co-occurrence
of samples between the views is not known or only partially known. In the
absence of such co-occurrence, it is difficult to jointly analyze multiple
views. The task in the proposed approach is to infer the matching of sam-
ples using the associated data values. A novel matching algorithm to infer
the one-to-one correspondence of samples between two views is proposed
in this thesis. The proposed matching algorithm solves the matching prob-
lem in a general setting where the samples in two views do not have the
same feature representation. The underlying assumption is that the cor-
rect matching of samples will reflect the statistical dependencies between
the views. Hence, the idea is to find a matching of samples by maximizing
the statistical dependencies between the views.

An iterative two-step approach to the matching algorithm based on
statistical dependency between views is proposed and three variants of the
generic algorithm are introduced:

• Matching of samples using canonical correlation analysis (CCA) by
maximizing the linear dependency between views. The first step as-
sumes a matching of samples, and uses CCA to find maximally de-
pendent subspaces for the views. Given CCA subspaces, the second
step computes the new matching of samples by again maximizing the
dependency between views.

• A kernelized extension of the matching algorithm using kernel CCA
to capture non-linear dependencies for the matching task. The idea
is to use the kernel trick, that is, to project the data onto a kernel
space and then apply the same two-step iterative approach to infer
the matching.

• Semi-supervised matching algorithm that utilizes the given seed pairs
of matched samples in the two views as a soft constraint to infer the
matching of remaining samples. Semi-supervised approach is imple-
mented in both the linear and the kernel variant of the matching
algorithm.

The three variants of the matching algorithm are demonstrated on a few
test cases in different applications. In Publication 4, gene probes between
two versions of Affymetrix platforms are matched, and in Publication 5,
sentences in Finnish-English parallel corpora are matched.

The next contribution of this thesis is a generalized matching problem
which extends the matching problem to a more realistic setting where each
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view has multiple realizations. A novel concept of the consensus match-
ing is introduced in Publication 6. The consensus matching is inferred
by combining all possible individual matching solutions based on any two
realizations, one from each view.

Future research directions

The problem of learning from multiple views with unpaired samples is a
new and emerging problem setting in many application domains, for in-
stance, bioinformatics and natural language processing. The first obvious
research direction is to apply the proposed matching algorithm also in other
application areas.

The current matching algorithm infers the one-to-one matching of sam-
ples in two views. Another possible future research direction is to extend
the matching algorithm for the one-to-many correspondences of samples
which might be more practical in many applications. There are some
other practical questions in the current matching algorithm that could be
taken further for future research. The first one is the initialization strategy.
The matching algorithm in this thesis, and also in (Haghighi et al., 2008;
Quadrianto et al., 2009) depend on the initialization. In addition to the
random initialization, prior information-based initialization in this thesis
and KPCA-based initialization in (Quadrianto et al., 2009) are also pro-
posed. A possible research direction is to develop a more generalized and
robust initialization strategy. Another practical issue is the complexity of
the Hungarian algorithm implementations which limits the use of matching
algorithms in this thesis and in (Haghighi et al., 2008; Quadrianto et al.,
2009) to really large scale data sets. In order to improve the scalability of
the matching algorithms, faster and lighter implementations can be devel-
oped to solve the bipartite matching.



74 5 Summary and conclusions



References

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6):716–723.

Archambeau, C., Delannay, N., and Verleysen, M. (2006). Robust proba-
bilistic projections. In Cohen, W. and Moore, A., editors, Proceedings
of the 23rd International Conference on Machine Learning, pages 33–40.
ACM.

Bach, F. R. and Jordan, M. I. (2002). Kernel independent component
analysis. Journal of Machine Learning Research, 3:1–48.

Bach, F. R. and Jordan, M. I. (2005). A probabilistic interpretation of
canonical correlation analysis. Technical Report 688, Department of
Statistics, University of California, Berkeley.

Bach, F. R., Lanckriet, G. R. G., and Jordan, M. I. (2004). Multiple kernel
learning, conic duality, and the smo algorithm. In ICML ’04: Proceedings
of the twenty-first international conference on Machine learning, page 6,
New York, NY, USA. ACM.

Barzilay, R. and McKeown, K. R. (2001). Extracting paraphrases from a
parallel corpus. In ACL ’01: Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, pages 50–57, Morristown,
NJ, USA. Association for Computational Linguistics.

Bengio, Y. and Grandvalet, Y. (2004). No unbiased estimator of the vari-
ance of k-fold cross-validation. Journal of Machine Learning Research,
5:1089–1105.

Bickel, S. and Scheffer, T. (2004). Multi-view clustering. In Proceedings of
the IEEE International Conference on Data Mining.

Bie, T. D. and Moor, B. D. (2003). On the regularization of canonical corre-
lation analysis. In ICA ’03: Proceedings of the International Conference
on Independent Component Analysis and Blind Source Separation.

75



76 References

Bingham, E. and Mannila, H. (2001). Random projection in dimensionality
reduction: applications to image and text data. In KDD ’01: Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 245–250, New York, NY, USA. ACM.

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data
with co-training. In Proceedings of the 11th Annual Conference on Com-
putational Learning Theory, pages 92–100. ACM, New York, NY, USA.

Borga, M. (2001). Canonical correlation - a tutorial.
http://people.imt.liu.se/∼magnus/cca/.

Brown, P. F., Lai, J. C., and Mercer, R. L. (1991). Aligning sentences in
parallel corpora. In Proceedings of the 29th Annual Meeting on Asso-
ciation for Computational Linguistics, pages 169–176, Morristown, NJ,
USA. Association for Computational Linguistics.

Burkard, R., Dell’Amico, M., and Martello, S. (2009). Assignment Prob-
lems. Society for Industrial and Applied Mathematics, Philadelphia.

Cesa-Bianchi, N., Hardoon, D. R., and Leen, G. (2010). Special issue on
learning from multiple sources. Machine Learning, 79(1–2).

Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised
Learning. MIT Press, Cambridge, MA.
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